Skip to main content

Splitting for Highly Dissipative Smoothed Particle Dynamics

  • Conference paper
  • 661 Accesses

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 15))

Summary

The method of smoothed dissipative particle dynamics (SDPD) is a novel coarse grained method for simulation of complex fluids. It has some advantages over more traditional particles based methods (Espanol and Warren, Europhys. Lett. 30(4):191–196, 1995). But one of the problems common for particle based simulations of microfluid system takes place also for SDPD: it fails to realize Schmidt number of O(103) typical of liquids.

In present paper we apply the implicit numerical scheme that allows significantly increase time step in SDPD and perform simulation for larger Schmidt number. Simulations using this methods show close agreement with serial solutions for Couette and Poiseuille flows. The results of benchmarks based on temperature control are presented. The dependence of self-diffusion coefficient D on kinematic viscosity is examined and found to be in agreement with empirical observations (Li and Chang, J. Chem. Phys. 23(3):518–520, 1955).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191–196

    Article  Google Scholar 

  2. Li J, Chang J (1955) Self-diffusion coefficient and viscosity in liquids. J Chem Phys 23(3):518–520

    MathSciNet  Google Scholar 

  3. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759

    Article  MathSciNet  Google Scholar 

  4. Espanol P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67:026705

    Article  Google Scholar 

  5. Groot RD, Warren PB (1997) Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107:4423–4435

    Google Scholar 

  6. Jiang WH, Huang JH, Wang YM, Laradji M (2007) Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics. J Chem Phys 126:044901

    Google Scholar 

  7. Symeonidis V, Karniadakis GE, Caswell B (2005) Dissipative particle dynamics simulations of polymer chains: Scaling laws and shearing response compared to dna experiments. Phys Rev Lett 95:076001

    Article  Google Scholar 

  8. Symeonidis V, Karniadakis GE (2006) A family of time-staggered schemes for integrating hybrid dpd models for polymers: Algorithms and applications. J Comput Phys 218:82–101

    Article  MATH  MathSciNet  Google Scholar 

  9. Shardlow T (2003) Splitting for dissipative particle dynamics. SIAM J Sci Comput 24(4):1267–1282

    Article  MATH  MathSciNet  Google Scholar 

  10. Monaghan J (1997) Implicit sph drag and dusty gas dynamics. J Comput Phys 138(2):801–820

    Article  MATH  MathSciNet  Google Scholar 

  11. Hu X, Adams N (2006) A multi-phase sph method for macroscopic and mesoscopic flows. J Comput Phys 213:844–861

    Article  MATH  MathSciNet  Google Scholar 

  12. Hu XY, Adams NA (2006) Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows. Phys Fluids 18:101702

    Article  Google Scholar 

  13. Grmela M, Öttinger H (1997) Dynamics and thermodynamics of complex fluids. I. development of a general formalism. Phys Rev E 56(6):6620–6632

    Article  MathSciNet  Google Scholar 

  14. Öttinger H, Grmela M (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys Rev E 56(6):6633–6655

    Article  MathSciNet  Google Scholar 

  15. Serrano M, Español P (2001) Thermodynamically consistent mesoscopic fluid particle model. Phys Rev E 64(4):46115

    Article  Google Scholar 

  16. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using sph. J Comput Phys 136:214–226

    Article  MATH  Google Scholar 

  17. Pagonabarraga I, Hagen M, Frenkel D (1998) Self-consistent dissipative particle dynamics algorithm. Europhys Lett 42(4):377–382

    Article  Google Scholar 

  18. Nikunen P, Karttunen M, Vattulainen I (2003) How would you integrate the equations of motion in dissipative particle dynamics simulations? Comput Phys Commun 153:407–423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Litvinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Litvinov, S., Hu, X.Y., Adams, N.A. (2009). Splitting for Highly Dissipative Smoothed Particle Dynamics. In: Ellero, M., Hu, X., Fröhlich, J., Adams, N. (eds) IUTAM Symposium on Advances in Micro- and Nanofluidics. IUTAM Bookseries, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2626-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2626-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2625-5

  • Online ISBN: 978-90-481-2626-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics