Skip to main content

Rules for Excited States of Degenerate Systems: Interpretation by Frozen Orbital Analysis

  • Chapter
Advances in the Theory of Atomic and Molecular Systems

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 19))

Abstract

This review addresses the rules for the ordering and the splitting of the excited states for the transitions between degenerate orbitals. First, the generality of the rules for the degenerate excitations is examined numerically by highly correlated methods for various types of systems, having D∞h, C∞v, Td, Oh, and Ih symmetries. Next, the qualitative interpretation of the rules for degenerate excitations is demonstrated by adopting the frozen-orbital approximation/analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Nakatsuji, K. Hirao, J. Chem. Phys. 68, 2035 (1978)

    Google Scholar 

  2. H. Nakatsuji, Chem. Phys. Lett. 59, 362 (1978); 67, 329, 334 (1979)

    Article  CAS  Google Scholar 

  3. H. Nakatsuji, Acta Chim. Hung. 129, 719 (1992)

    CAS  Google Scholar 

  4. The frozen-orbital approximation is explained in the standard texts of quantum chemistry, such as A. Szabo, N. S. Ostlund, Modern Quantum Cchemistry: Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1989); the concept of the frozen-orbital analysis was first proposed in the following paper: H. Nakai, H. Morita, H. Nakatsuji, J. Phys. Chem. 100, 15753 (1996)

    Google Scholar 

  5. H. Nakai, H. Morita, P. Tomasello, H. Nakatsuji, J. Phys. Chem. A 102, 2003 (1998)

    Article  Google Scholar 

  6. S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, H. Tatewaki, Gaussian Basis Sets for Molecular Calculations (Elsevier, New York, 1984)

    Google Scholar 

  7. T. H. Dunning, Jr. and P. J. Hay, Modern Theoretical Chemistry, ed. by H. F. Schaeffer, III (Plenum, New York, 1977), Vol. 3

    Google Scholar 

  8. E. Runge, E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1985)

    Article  Google Scholar 

  9. S. Hirata, M. Head-Gordon, Chem. Phys. Lett. 314, 291 (1999)

    Article  CAS  Google Scholar 

  10. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989)

    Article  CAS  Google Scholar 

  11. W. Stevens, H. Basch, J. Krauss, J. Chem. Phys. 81, 6026 (1984)

    Article  Google Scholar 

  12. A. D. Becke, Phys. Rev. A 38, 3098 (1997)

    Article  Google Scholar 

  13. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  14. A. D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  15. D. Stahel, M. Leoni, K. Dressler, J. Chem. Phys. 79, 2541 (1983)

    Article  CAS  Google Scholar 

  16. J. Oddershede, N. E. Grüner, G. H. F. Diercksen, Chem. Phys. 97, 303 (1985)

    Article  CAS  Google Scholar 

  17. K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979)

    Book  Google Scholar 

  18. E. S. Nielsen, P. Jørgensen, J. Oddershede, J. Chem. Phys. 73, 6238 (1980)

    Article  CAS  Google Scholar 

  19. T. Pino, H. Ding, F. Güthe, J. P. Maier, J. Chem. Phys. 114, 2208 (2001)

    Article  CAS  Google Scholar 

  20. J. W. Rabalais, J. M. McDonald, V. Scherr, S. P. McGlynn, Chem. Rev. 71, 73 (1971)

    Article  Google Scholar 

  21. J. Lorentzon, P.-A. Malmquist, M. Fulscher, B. O. Roos, Theor. Chim. Acta 91, 91 (1995)

    Article  CAS  Google Scholar 

  22. A. Kaito, A. Takiri, M. Hatano, Chem. Phys. Lett. 25, 548 (1974)

    Article  CAS  Google Scholar 

  23. H. Morita, H. Nakai, H. Hanada, H. Nakatsuji, Mol. Phys. 92, 523 (1997)

    CAS  Google Scholar 

  24. S. Jitsuhiro, H. Nakai, M. Hada, H. Nakatsuji, J. Chem. Phys. 101, 1029 (1994)

    Article  CAS  Google Scholar 

  25. H. Nakatsuji, S. Saito, J. Chem. Phys. 93, 1865 (1990)

    Article  CAS  Google Scholar 

  26. H. Nakai, Y. Ohmori, H. Nakatsuji, J. Chem. Phys. 95, 8287 (1991)

    Article  CAS  Google Scholar 

  27. J. Hasegawa, K. Toyota, M. Hada, H. Nakai, H. Nakatsuji, Theor. Chim. Acta 92, 351 (1995)

    CAS  Google Scholar 

  28. H. Nakatsuji, S. Saito, Int. J. Quantum Chem. 39, 93 (1991)

    Article  CAS  Google Scholar 

  29. T. Baba, Y. Imamura, M. Okamoto, H. Nakai, Chem. Lett. 37, 322 (2008)

    Article  CAS  Google Scholar 

  30. E. Koudoumas, A. Ruth, S. Couris, S. Leach, Mol. Phys. 88, 125 (1996)

    Article  CAS  Google Scholar 

  31. T. Koopmans, Physica 1, 104 (1933)

    Article  CAS  Google Scholar 

  32. W. Kohn, L. J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  Google Scholar 

  33. A. F. Janak, Phys. Rev. B 18, 7165 (1978)

    Article  CAS  Google Scholar 

  34. F. Z. Hund, Phys. 33, 345 (1925)

    Article  CAS  Google Scholar 

  35. D. A. Kohl, J. Chem. Phys. 56, 4236 (1972)

    Article  CAS  Google Scholar 

  36. R. J. Boyd, Nature 310, 480 (1984)

    Article  CAS  Google Scholar 

  37. J. W. Warner, R. S. Berry, Nature 313, 160 (1985)

    Article  Google Scholar 

  38. Y. Imamura, T. Baba, H. Nakai, Chem. Lett., 38, 258 (2009)

    Article  Google Scholar 

  39. M. Kasha, Discuss. Faraday Soc. 9, 14 (1950)

    Article  Google Scholar 

  40. M. El-Sayed, Acc. Chem. Res. 1, 8 (1968)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Nakai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nakai, H. (2009). Rules for Excited States of Degenerate Systems: Interpretation by Frozen Orbital Analysis. In: Piecuch, P., Maruani, J., Delgado-Barrio, G., Wilson, S. (eds) Advances in the Theory of Atomic and Molecular Systems. Progress in Theoretical Chemistry and Physics, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2596-8_18

Download citation

Publish with us

Policies and ethics