Skip to main content

Fermi-Vacuum Invariance in Multiconfiguration Perturbation Theory

  • Chapter

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 19))

Abstract

We investigate the dependence of multiconfigurational perturbation theory framework on the choice of the Fermi-vacuum. A new formulation, based on a posteriori averaging is suggested. The averaged theory is invariant with respect to Fermi-vacuum choice but enhances the intruder effect. The performance of the averaged formulation is illustrated on the ethylene rotational potential curve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Silverstone, O. Sinanoğlu, J. Chem. Phys. 44, 3608 (1966)

    Article  CAS  Google Scholar 

  2. B. Jeziorski, H.J. Monkhorst, Phys. Rev. A 24, 1668 (1981)

    Article  CAS  Google Scholar 

  3. J. Paldus, in Methods in Computational Molecular Physics, Vol. 293, ed. by S. Wilson, G. Dierksen (Plenum, New York, 1992), pp. 99–104

    Google Scholar 

  4. X. Li, J. Paldus, J. Chem. Phys. 120, 5890 (2004)

    Article  CAS  Google Scholar 

  5. N. Bera, S. Gosh, D. Mukherjee, J. Phys. Chem. A 109, 11462 (2005)

    Article  CAS  Google Scholar 

  6. N. Oliphant, L. Adamowicz, J. Chem. Phys. 94, 1229 (1991)

    Article  CAS  Google Scholar 

  7. P. Piecuch, N. Oliphant, L. Adamowicz, J. Chem. Phys. 99, 1875 (1993)

    Article  CAS  Google Scholar 

  8. M. Kállay, P. Szalay, P. Surján, J. Chem. Phys. 117, 980 (2002)

    Article  Google Scholar 

  9. P. Piecuch, M. Włoch, J.R. Gour, A. Kinal, Chem. Phys. Lett. 418, 467 (2006)

    Article  CAS  Google Scholar 

  10. P. Piecuch, M. Włoch, J. Chem. Phys. 123, 224105 (2005)

    Article  Google Scholar 

  11. P. Ghosh, S. Chattopadhyay, D. Jana, D. Mukherjee, Int. J. Mol. Sci. 3, 733 (2002)

    Article  CAS  Google Scholar 

  12. D. Hegarty, M.A. Robb, Mol. Phys. 37, 1455 (1979)

    Article  CAS  Google Scholar 

  13. G. Hose, U. Kaldor, J. Phys. B 12, 3827 (1979)

    Article  CAS  Google Scholar 

  14. Y. Khait, J. Song, M.R. Hoffmann, J. Chem. Phys. 117, 4133 (2002)

    Article  CAS  Google Scholar 

  15. K. Wolinski, H. Sellers, P. Pulay, Chem. Phys. Lett. 140, 225 (1987)

    Article  CAS  Google Scholar 

  16. K. Wolinski, P. Pulay, J. Chem. Phys. 90, 3647 (1989)

    Article  CAS  Google Scholar 

  17. P. Durand, J. Malrieu, in Ab Initio Methods in Quantum Chemistry, Vol. 2, ed. by K. Lawley (Wiley, New York, 1987), pp. 321–104

    Google Scholar 

  18. K. Andersson, P.Å. Malmqvist, B.O. Roos, A.J. Sadlej, K. Wolinski, J. Phys. Chem. 94, 5483 (1990)

    Article  CAS  Google Scholar 

  19. K. Andersson, P.Å. Malmqvist, B.O. Roos, J. Chem. Phys. 96, 1218 (1992)

    Article  CAS  Google Scholar 

  20. K. Hirao, Chem. Phys. Lett. 201, 59 (1993)

    Article  CAS  Google Scholar 

  21. A. Zaitevskii, J.P. Malrieu, Theor. Chim. Acta 96, 269 (1997)

    Article  Google Scholar 

  22. Z. Rolik, Á. Szabados, P.R. Surján, J. Chem. Phys. 119, 1922 (2003)

    Article  CAS  Google Scholar 

  23. Á. Szabados, Z. Rolik, G. Tóth, P.R. Surján, J. Chem. Phys. 122, 114104 (2005)

    Article  Google Scholar 

  24. M. Kállay, P.G. Szalay, P.R. Surján, J. Chem. Phys. 117, 980 (2002)

    Article  Google Scholar 

  25. D.I. Lyakh, V.V. Ivanov, L. Adamowicz, J. Chem. Phys. 128, 074101 (2008)

    Article  Google Scholar 

  26. E.R. Davidson, J. Chem. Phys. 57, 1999 (1972)

    Article  CAS  Google Scholar 

  27. E. Kapuy, F. Bartha, F. Bogár, C. Kozmutza, Theor. Chim. Acta 72, 337 (1987)

    Article  CAS  Google Scholar 

  28. E. Kapuy, F. Bartha, F. Bogár, Z. Csépes, C. Kozmutza, Int. J. Quantum Chem. 37, 139 (1990)

    Article  Google Scholar 

  29. J. Pipek, F. Bogár, Top. Curr. Chem. 203, 43 (1999)

    Article  CAS  Google Scholar 

  30. P. Surján, Z. Rolik, Á. Szabados, D. KHohalmi, Ann. Phys. (Leipzig) 13, 223 (2004)

    Article  Google Scholar 

  31. R. McWeeny, Methods of Molecular Quantum Mechanics (Academic, London, 1989)

    Google Scholar 

  32. T.H. Dunning Jr., J. Chem. Phys. 53, 2829 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ágnes Szabados .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Szabados, Á., Surján, P.R. (2009). Fermi-Vacuum Invariance in Multiconfiguration Perturbation Theory. In: Piecuch, P., Maruani, J., Delgado-Barrio, G., Wilson, S. (eds) Advances in the Theory of Atomic and Molecular Systems. Progress in Theoretical Chemistry and Physics, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2596-8_12

Download citation

Publish with us

Policies and ethics