Skip to main content

Linear Augmented Cylindrical Wave Method for Electronic Structure of Isolated, Embedded, and Double-Walled Nanotubes

  • Conference paper
SelfOrganization of Molecular Systems

The results of study of the band structure of single-walled nanotubes, both isolated and embedded into a crystal matrix, and double-walled nanotubes are surveyed. The mathematical apparatus of the linear augmented cylindrical wave (LACW) method is described, and its application to prediction of the electronic properties, semiconducting and metallic, of nanotubes is considered. The method uses the local density functional approximation and the muffin-tin (MT) approximation for the electron potential and is implemented as a quantum-mechanical program package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. T. W. Ebeson, Phys. Today 49, 26 (1996).

    Article  Google Scholar 

  3. P. G. Collins, A. Zettl, H. Bando, A. Thess, R. E. Smalley, Science 278, 100–102 (1997).

    Article  CAS  Google Scholar 

  4. C. Dekker, Phys. Today, 52(5), 22–28 (1999).

    Article  CAS  Google Scholar 

  5. P. M. Ajayan, Chem. Rev. 99, 1787–1799 (1999).

    Article  CAS  Google Scholar 

  6. S. J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49–51 (1998).

    Article  CAS  Google Scholar 

  7. S. Frank, P. Poncharal, Z. L. Wang, W. A. de Heer, Science 280, 1744–1746 (1998).

    Article  CAS  Google Scholar 

  8. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, Nature 386, 474–477 (1997).

    Article  CAS  Google Scholar 

  9. J. W. Mintmire, B. I. Dunlap, C. T. White, Phys. Rev. Lett. 68(5), 631–634 (1992).

    Article  CAS  Google Scholar 

  10. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 46(3), 1804–1811 (1992).

    Article  CAS  Google Scholar 

  11. R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

    Article  CAS  Google Scholar 

  12. C. T. White, D. H. Robertson, J. W. Mintmire, Phys. Rev. B 47, 5485 (1993).

    Article  CAS  Google Scholar 

  13. M. Bockrath et al., Science 275, 1922–1925 (1997).

    Article  CAS  Google Scholar 

  14. M. Bockrath et al., Nature 397, 598–601 (1999).

    Article  CAS  Google Scholar 

  15. J. Nygard, D. H. Cobden, P. E. Lindelof, Nature 408, 342–345 (2000).

    Article  CAS  Google Scholar 

  16. A. Y. Kasumov et al., Science 284, 1508–1511 (1999).

    Article  CAS  Google Scholar 

  17. A. F. Morpurgo, J. Kong, C. Marcus, H. Dai, Science 286, 263–265 (1999).

    Article  CAS  Google Scholar 

  18. Z. Yao, H.W.Ch. Postma, L. Balents, C. Dekker, Nature 402, 273–276 (1999).

    Article  CAS  Google Scholar 

  19. D. D. Koelling, G. O. Arbman, J. Phys. F: Metal Phys. 5(11), 2041 (1975).

    Article  CAS  Google Scholar 

  20. V. V. Nemoshkalenko, V. N. Antonov, (Naukova Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  21. P. N. D'yachkov, A. V. Nikolaev, Dokl. Chem. 344(4–6), 235 (1995).

    Google Scholar 

  22. H. Krakauer, M. Posternak, A. J. Freeman, Phys. Rev. B 19(4), 1706 (1979).

    Article  CAS  Google Scholar 

  23. P. N. D'yachkov, B. S. Kuznetsov, Dokl. Phys. Chem. 395(1), 57 (2004).

    Article  Google Scholar 

  24. P. N. D'yachkov, in Encyclopedia of Nanoscience and Nanotechnology, edited by H. S. Nalwa. American Scientific Publishers, 1,192–212, (2003).

    Google Scholar 

  25. P. N. D'yachkov, O. M. Kepp, Dokl. Chem. 365(1–3), 62 (1999).

    Google Scholar 

  26. P. N. D'yachkov, D. V. Kirin, Dokl. Phys. Chem. 369(4–6), 326 (1999).

    Google Scholar 

  27. P. N. D'yachkov, O. M. Kepp, in Science and Application of Nanotubes, edited by D. Tomanek and R. J. Enbody (Kluwer/Plenum. New York), 77 (2000).

    Google Scholar 

  28. P. N. D'yachkov, D. V. Kirin, Ital. Phys. Soc., Conf. Proc. 74, 203 (2000).

    Google Scholar 

  29. P. N. D'yachkov, D. V. Makaev, Phys. Rev. B 74, 155442 (2006).

    Article  Google Scholar 

  30. P. N. D'yachkov, D. V. Makaev, Phys. Rev. B 71, 081101(R) (2005).

    Google Scholar 

  31. P. N. D'yachkov, D. V. Makaev, Phys. Rev. B 76, 057743 (2007).

    Google Scholar 

  32. G. N. Watson, A Treatise on the Theory of Bessel Functions (1945).

    Google Scholar 

  33. G. A. Korn, T. M. Korn, Mathematical handbook for scientists and engineers (McGraw-Hill, New York, 1961).

    Google Scholar 

  34. P. N. D'yachkov, H. Hermann, D. V. Kirin, Appl. Phys. Lett. 81, 5228 (2002).

    Article  Google Scholar 

  35. P. N. D'yachkov, H. Hermann. J. Appl. Phys. 95, 399 (2004).

    Article  Google Scholar 

  36. P. N. D'yachkov, D. V. Makaev, Dokl. Phys. Chem. 402(2), 109 (2005).

    Article  Google Scholar 

  37. A. Jensen, J. R. Hauptmann, J. Nygerd, J. Sadowski, P. E. Lindelof., Nano Lett. 4, 349 (2004).

    Article  CAS  Google Scholar 

  38. D. V. Makaev, P.N. D'yachkov, JETF Lett. 84(5–6), 397 (2006).

    Google Scholar 

  39. D. V. Makaev, P. N. D'yachkov, Dokl. Phys. Chem. 419(1), 47–53 (2008).

    CAS  Google Scholar 

  40. R. C. Tatar, S. Rabii, Phys. Rev. B 25, 4126 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

D'yachkov, P., Makaev, D. (2009). Linear Augmented Cylindrical Wave Method for Electronic Structure of Isolated, Embedded, and Double-Walled Nanotubes. In: Russo, N., Antonchenko, V.Y., Kryachko, E.S. (eds) SelfOrganization of Molecular Systems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2590-6_8

Download citation

Publish with us

Policies and ethics