Skip to main content

Davydov's Solitons in DNA

  • Conference paper

Charge transfer in homogeneous nucleotide chains is modeled on the basis of Holstein Hamiltonian. The path length of Davydov solitons in these chains is being studied. It is shown that in a dispersionless case, when the soliton velocity V is small, the path length grows exponentially as V decreases. In this case the state of a moving soliton is quasisteady. In the presence of dispersion determined by the dependence \(\Omega ^2 = \Omega _0^2 + V_0^2 \kappa ^2 \) the path length in the region 0 < V < V0 is equal to infinity. In this case the phonon environment follows the charge motion. In the region V > V0 the soliton motion is accompanied by emission of phonons which leads to a finite path length of a soliton. The latter tends to infinity as VV0 + 0 and V → ∞. The presence of dissipation leads to a finite soliton path length.

An equilibrium velocity of soliton in an external electric field is calculated. It is shown that there is a maximum intensity of an electric field at which a steady motion of a soliton is possible. The soliton mobility is calculated for the stable or ohmic brunch.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakhno, V. D.: DNA nanobioelectronics, Int. J. Quant. Chem., 108(11), 1970–1981 (2008).

    Article  CAS  Google Scholar 

  2. Dekker, C.; Ratner, M. A.: Electronic properties of DNA, Phys. World, 14, 29–33 (2001).

    CAS  Google Scholar 

  3. Bhalla, V., Bajpai, R P., Bharadwaj, L. M.: DNA electronics. Eur. Mol. Biol. Rep., 4, 442–445 (2003).

    CAS  Google Scholar 

  4. Porath, D., Guniberti, G., Di Felice, R.: Long-range charge transfer in DNA. Top. Curr. Chem., 237, 183–227 (2004).

    CAS  Google Scholar 

  5. Davydov, A. S.: The theory of contraction of proteins under their excitation. J. Theor Biol., 38(3), 559–569 (1973).

    Article  CAS  Google Scholar 

  6. Davydov, A. S.: Solitons and energy transfer along protein molecules. J. Theor. Biol., 66, 379–387 (1977).

    Article  CAS  Google Scholar 

  7. Davydov, A. S.: Solitons, bioenergetics and the mechanism of muscle contraction. Int. J. Quant. Chem., 16(1), 5–17 (1979).

    Article  CAS  Google Scholar 

  8. Davydov, A. S.: Solitons in molecular systems. Phys. Scr. 20, 387–394 (1979).

    Article  CAS  Google Scholar 

  9. Davydov, A. S.: Solitons in quasi-one-dimensional molecular structures. Soviet Phys. Usp., 25, 898–918 (1982).

    Article  Google Scholar 

  10. Davydov, A. S.: Soliton in Molecular Systems, Reidel, Dodrecht (1985).

    Google Scholar 

  11. Holstein, T.: Studies of polaron motion. 1. The small polaron, Ann. Phys. (N.Y.), 8, 343–389 (1959).

    Article  CAS  Google Scholar 

  12. Lakhno, V. D.: Sequence dependent hole evolution in DNA. J Biol. Phys., 30, 123–138 (2004).

    Article  CAS  Google Scholar 

  13. Fialko, N. S., Lakhno, V. D.: Long-range charge transfer in DNA. Reg. Chaotic Dyn., 7(3), 299–313 (2002).

    Article  Google Scholar 

  14. Fialko, N. S., Lakhno, V. D.: Nonlinear dynamics of excitations in DNA. Phys. Lett. A, 278, 108–111 (2000).

    Article  CAS  Google Scholar 

  15. Lakhno, V. D., Fialko, N. S.: HSSH-model of hole transfer in DNA. Eur. Phys. J. B. 43, 279–281 (2005).

    Article  CAS  Google Scholar 

  16. Landau, L. D.: On the motions of electrons in crystal lattice. Phys. Zs. Sowjet., 3, 664–665 (1933).

    CAS  Google Scholar 

  17. Pekar, S. I.: Issledovaniya po Electronnoi Teorii Kristallov (Studies in the Electronic Theory of Crystals), Gostekhizdat, Moscow, (1951).

    Google Scholar 

  18. Landau, L. D., Pekar, S. I.: Polaron effective mass. ZhETF, 18, 419–423 (1948).

    CAS  Google Scholar 

  19. Davydov, A. S., Enol'skii, V. Z.: Motion of an excess electron in a molecular chain with allowance for interaction with optical phonons. ZhETF, 79(11), 1888–1896 (1980).

    CAS  Google Scholar 

  20. Davydov, A. S., Enol'skii, V. Z.: On the effective mass of Pekar's polaron Phys. Status. Solidi B, 143, 167–172 (1987).

    Article  Google Scholar 

  21. Davydov, A. S., Enol'skii, V. Z.: Effective mass of Pekar polaron. ZhETF, 94(2), 177–181 (1988).

    Google Scholar 

  22. Myasnikova, A. E., Myasnikov, E. N.: The tenzor of polaron inert mass in isotrope media. ZhETF, 115(1), 180–186 (1999).

    Google Scholar 

  23. Myasnikova, A. E., Myasnikov, E. N.: On the conditions of Landau—Pekar polaron existence. ZhETF, 116(10), 1386–1397 (1999).

    Google Scholar 

  24. Myasnikova, A. E.: Band structure in autolocalization and bipolaron models of hightemperature superconductivity. Phys. Rev. B, 52, 10457–10467 (1995).

    Article  CAS  Google Scholar 

  25. Myasnikova, A. E., Myasnikov, E. N.: Band theory of semiconductors and autolocalization of electrons. Phys. Lett. A, 286, 210–216 (2001).

    Article  Google Scholar 

  26. Lakhno, V. D., Korshunova, A. N.: Simulation of soliton formation in a uniform chain. Math Model., 19, 3–13 (2007).

    Google Scholar 

  27. Lakhno, V. D., Fialko, N. S.: Temperature destruction of soliton. In: Mathematical Biology & Bioinformatics, V. D. Lakhno (ed.), Proc. Int. Conf., Pushchino, 27–28 (2006).

    Google Scholar 

  28. Bernasconi, J., Schneider, T. (eds.), Physics in One Dimension, Springer-Verlag, Berlin/Heidelberg/New York, (1981).

    Google Scholar 

  29. Heeger, A. J., Kivelson, S., Schrieffer, J. R.: Solitons in conducting polymers. Rev. Mod. Phys., 60(3), 781–850 (1988).

    Article  CAS  Google Scholar 

  30. Scott, A.C.: Davydov's soliton. Phys. Rep., 217, 1–67 (1992).

    Article  Google Scholar 

  31. Lakhno, V. D.: Nonlinear models in DNA conductivity. Chapter 24 In: Modern Methods for Theoretical Physical Chemistry of Biopolymer, Starikov, E.B., Lewis, J.P., Tanaka, S. (eds.), Elsevier Science Ltd. 604 pp., 461–481 (2006).

    Google Scholar 

  32. Voityuk, A. A., Rösch, N., Bixon, M., Jortner, J.: Electronic coupling for charge transfer and transport in DNA. J. Phys. Chem. B., 104, 9740–9745 (2000).

    Article  CAS  Google Scholar 

  33. Jortner, J., Bixon, M., Voityuk, A. A., Rösch, N. J.: Superexchange mediated charge hopping in DNA. J. Phys. Chem. A., 106(33), 7599–7606 (2002).

    Article  CAS  Google Scholar 

  34. Starikov, E. B.: Phil. Mag. Electron–phonon coupling in DNA: a systematic study. Phil. Mag., 85, 3435–3462 (2005).

    Article  CAS  Google Scholar 

  35. Bogolubov, N. N.: About one new form of adiabatic perturbation theory in the problem of particle interacted with quantum field. Ukr. Mat. Zh., 2(2), 3–24 (1950).

    Google Scholar 

  36. Tyablikov, S. V.: Adiabatic form of perturbation theory in the problem of particle interacted with quantum field. ZhETF, 21(3), 377–383 (1951).

    Google Scholar 

  37. Lakhno, V. D., Chuev, G. N.: Structure of a strongly coupled large polaron. Phys.— Usp., 38(3), 273–285 (1995).

    Article  Google Scholar 

  38. Tyablikov, S. V.: On electron energy spectrum in polar crystal. ZhETF, 23(10), 381–391 (1952).

    CAS  Google Scholar 

  39. Firsov, Y. A. (ed.), Polarons. Nauka, Moscow (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Lakhno, V.D. (2009). Davydov's Solitons in DNA. In: Russo, N., Antonchenko, V.Y., Kryachko, E.S. (eds) SelfOrganization of Molecular Systems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2590-6_12

Download citation

Publish with us

Policies and ethics