Skip to main content

Adhesion of Nanoparticles

  • Chapter
  • First Online:
Adhesion of Cells, Viruses and Nanoparticles

Abstract

Nanoparticles are ubiquitous: in the vacuum of space where they are visible through their spectral signatures,1 and also on earth where they are present in the atmosphere as aerosols, in fresh waters where they occur as humic substances causing the brown colour in bog water and as clay particles from erosion of rocks, and in the sea where they can be precipitated from silicate and calcium-based solutions. Nanoparticles have found numerous industrial applications; in pigments, cements and coatings; they can also be used as functional additives giving optical or electronic effects, as reinforcing agents and also to control the stiffness of soft solids.2 There is much known about material at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grün, E., Baguhl, M., Svedhem, H., Zook, H.A.: In situ measurements of cosmic dust. In: Grün E. (ed) Interplanetary Dust, pp. 295–346. Springer, London and Berlin (2001).

    Google Scholar 

  2. Kendall, K., Molecular Adhesion and its applications, Kluwer, New York 2001.

    Google Scholar 

  3. Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F., Smalley, R. E., C60: Buckminsterfullerene, Nature 318 (1985) 162–163.

    Article  CAS  Google Scholar 

  4. Srama, R. et al, Sample return of interstellar matter, Experimental astronomy, (2008) 10.1007/s10686–008–9088–7.

    Google Scholar 

  5. Altobelli, N., E. Grün, E. and Landgraf, M., A new look into the Helios dust experiment data: presence of interstellar dust inside the Earth’s orbit, Astronomy and Astrophysics 448 (2006) 243–252.

    Article  Google Scholar 

  6. Kearsley, A.T., Graham, G.A., Burchell, M.J., Taylor, E.A., Drolshagen, G., Chater, R.J., McPhail, D., Mulpex: A compact multi-layered polymer foil collector for micrometeoroids and orbital debris, Advances in Space Research 35 (2005) 1270–81.

    Article  Google Scholar 

  7. Zolensky, M.E. et al Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples, Science 314 (2006) 1735–1739; http://stardust1.jpl.nasa.gov/photo/aerogel

  8. Peters A. et al., Respiratory effects are associated with the number of ultrafine particles. Am J Resp Crit Care Med. 155 (1997) 1376–1383.

    CAS  Google Scholar 

  9. Peters, A., Dockery, D.W., Muller, J.E., Mittleman, M.A., Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103 (2001) 2810–2815.

    CAS  Google Scholar 

  10. Aitken, J., On dust, fogs, and clouds. Transactions of the Royal Society of Edinburgh 30 (1883) 337–368.

    Google Scholar 

  11. Morawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., Ling, X., Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure Atmospheric Environment 42 (2008) 8113–8138.

    CAS  Google Scholar 

  12. Dunn, M.J., Jimenez, J.L., Baumgardner, D., Castro, T., McMurry, P.H., Smith, J.N., Measurements of Mexico City nanoparticle size distributions: Observations of new particle formation and growth. Geophysical Research Letters, 31 (2004) L10102.

    Article  Google Scholar 

  13. Seinfeld, J.H., and Pandis, S.N., Atmospheric chemistry and physics. From air pollution to climate change, John Wiley and Sons, inc., New York 1998.

    Google Scholar 

  14. Shi, J.P., Evans, D.E., Khan, A.A., Harrison, R.M., Sources and concentration of nanoparticles in the urban atmosphere, Atmospheric Environment 35 (2001) 1193–1202.

    Article  CAS  Google Scholar 

  15. Wahlin, P., Measured reduction of kerbside ultrafine particle number concentrations in Copenhagen, Atmospheric Environment, 43 (2009) 3645–3647.

    Article  CAS  Google Scholar 

  16. Ayres, J.G., (chairman) Long-term exposure to air pollution: effect on mortality, COMEAP report (2009) ISBN 978–0–85951–640–2.

    Google Scholar 

  17. Dockery, D.W., Pope, C.A., Xu X, Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, B.G., Speizer, F.E., An Association between Air Pollution and Mortality in Six US Cities, New England Journal of Medicine, 329 (1993) 1753.

    Article  CAS  Google Scholar 

  18. World Health Organisation (WHO). 2006. Air quality Guidelines for particulate matter, ozone, nitrogen dioxide and sulphur dioxide. Global update 2005. Summary of risk assessment. WHO; Oberdorster, G. et al. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspec, 113 (2005) 823–839.

    Google Scholar 

  19. Christian, P., Von der Kammer, F., Baalousha, M., Hofmann, T., Nanoparticles: structure, properties, preparation and behaviour in environmental media, Ecotoxicology (2008) 10.1007/s10646–008–0213.

    Google Scholar 

  20. Baan, R., et al. Carcinogenicity of carbon black, titanium dioxide, and talc. The Lancet Oncology. Vol. 7 (Apr. 2006). P. 295–296.

    Google Scholar 

  21. Park, E., Yoon, J., Choi, K., Yi, J., Park, K., Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation, Toxicology 260 (2009) 37–46.

    CAS  Google Scholar 

  22. Kendall, K., Kosseva, M.R., Adhesion of nanoparticles fouling glass surfaces, J Adhesion 81 (2005) 1–14.

    Article  Google Scholar 

  23. Kendall, K., Kosseva, M.R., Nanoparticle Aggregation influenced by Magnetic Fields. Colloids & Surfaces A: Physiochemical & Engineering Aspects, 286 (2006) 112–116.

    Article  CAS  Google Scholar 

  24. Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR., Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27 (2008) 1875–1882.

    Google Scholar 

  25. Giammar DE, Maus CJ, Xie L., Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environ Eng Sci 24 (2007) 85–95.

    Article  CAS  Google Scholar 

  26. Hofmann, German patent 250690 to Bayer Farbenfabriken (1913).

    Google Scholar 

  27. Kendall, K. and Padget, J.C., Int J Adhesion and Adhesives 2 (1982) 149–54.

    Article  CAS  Google Scholar 

  28. Needham, J., Science and Civilisation in China, Cambridge University Press, Cambridge, 1985, pp.239–47.

    Google Scholar 

  29. Bye, G.C., Portland Cement, 2nd Edition, Thomas Telford, 1999, ch. 1

    Google Scholar 

  30. Kendall, K., Howard, A.J., Birchall, J.D., The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials, Phil Trans R Soc Lond A310 (1983) 139–153.

    Article  Google Scholar 

  31. Witynski, K and Carr, J.P., Adobe details, Gibbs Smith, PO Box 667, Layton UT, 2002.

    Google Scholar 

  32. Kang, S-J, Sintering: Densification, grain growth and microstructure, Elsevier Oxford 2005.

    Google Scholar 

  33. Friedlander, S.K., Smoke, dust and haze: Fundamentals of aerosol behaviour, 2nd edition, Oxford University Press, 2000.

    Google Scholar 

  34. Matijevic, E., Scheiner, P., J Colloid Interface Science 63 (1978) 509–524.

    Article  CAS  Google Scholar 

  35. Kendall, K., Amal, R., Jiang, X. and Yu, A., Effect of adhesion on aggregation in nanoparticle dispersions, J Adhesion 83 (2007) 573–585.

    Article  CAS  Google Scholar 

  36. Carr, R., Hole, P., Malloy, A., Weld, A., Smith, J. & Warren, J. The real-time, simultaneous measurement of size, surface charge and fluorescence of populations of nanoparticles in liquids. Particle Systems Analysis, 2008, Stratford on Avon UK, pp1–5.

    Google Scholar 

  37. Carr, R., Weld, A. & Smith, J. Seeing and Sizing Nanoparticles in Liquids: Multi-particle Tracking of Brownian Motion. Development and Applications of Nanotechnology and Microscopy, Pittsburg Conference(PITTCON) (3rd April 2008).

    Google Scholar 

  38. Malloy, A. & Carr, R. Nanoparticle tracking analysis - The Halo (TM) system. Part. Syst. Charact. 23 (2006) 197–204.

    Article  Google Scholar 

  39. Carr, R. Patrick Hole and Andrew Malloy. 8th International Congress on Optical Particle Characterisation, Karl-Franzens University Graz, Austria (9–13 July 2007).

    Google Scholar 

  40. Babu, S., Gimel, J. C. & Nicolai, T. Phase separation and percolation of reversibly aggregating spheres with a square-well attraction potential. J. Chem. Phys. 125, (2006) 184512 1–10.

    Google Scholar 

  41. Dyuzheva, M. S. & Klyubin, V. V. Measurement of continuous particle size distributions of finely dispersed powders by the dynamic light scattering. Colloid J. 65, (2003) 567–570.

    Article  CAS  Google Scholar 

  42. Kendall, K., Liang, W. & Stainton, C. New theory and observations of cell adhesion. Proc. R. Soc. Lond. A 454, (1998) 2529–2533.

    Article  Google Scholar 

  43. Kendall, K. & Stainton, C. Adhesion and aggregation of fine particles. Powder Techno. 121, (2001) 223–229.

    Article  CAS  Google Scholar 

  44. Stainton, C., Liang, W. & Kendall, K. Formation and fracture of adhesive bonds between colloidal spheres. Eng. Fract. Mech. 61, (1998) 83–91.

    Article  Google Scholar 

  45. Liang, W. & Kendall, K. Aggregate formation in colloidal dispersions. Colloids Surfaces A 131 (1998) 193–201.

    Article  CAS  Google Scholar 

  46. Kendall, K., Dhir, A., Du, S., A new measure of molecular attractions between nanoparticles near kT adhesion energy, Nanotechnology 20 (2009) 0275701.

    Article  Google Scholar 

  47. Polin, M., Roichman, Y. and Grier, D.G., Autocalibrated colloidal interaction measurements with extended optical traps, Phys Rev E77 (2008) 051401–17.

    Google Scholar 

  48. Roberts, G.S., Wood, T.A., Frith, W.J. and Bartlett, P., Direct Measurement of the effective charge in nonpolar suspensions by optical tracking of single particles, J Chem Phys 126 (2007) 194503–1–12.

    Google Scholar 

  49. Sainis, S.K., Germain, V. and Dufresne, E.R., Statistics of particle trajectories at short time intervals reveal fN-scale colloidal forces, Phys Rev Lett 99 (2007), 018303–1–4.

    Google Scholar 

  50. Gunning, A.P., Chambers, S., Pin, C., Man, A.L., Morris, J. and Nicoletti, C., Mapping specific adhesive interactions on living human intestinal epithelial cells with AFM, FASEB 22 (2008) 2331–9.

    Article  CAS  Google Scholar 

  51. Goncalves, R.P. and Scheuring, S., Manipulating and imaging individual membrane proteins by AFM, Surface Interface Anal, 38 (2008) 1413–8.

    Article  Google Scholar 

  52. Thornton, J.T., Microscopy Microanalysis, Applications of AFM in the pharmaceutical sciences, 8 (2002) 742–743.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Kendall .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kendall, K., Kendall, M., Rehfeldt, F. (2010). Adhesion of Nanoparticles. In: Adhesion of Cells, Viruses and Nanoparticles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2585-2_8

Download citation

Publish with us

Policies and ethics