Skip to main content

Modelling Nanoparticle, Virus and Cell Adhesion

  • Chapter
  • First Online:
Adhesion of Cells, Viruses and Nanoparticles

Abstract

As we start to look at nanoparticles, viruses and cells, it becomes apparent that the one parameter model described in the previous chapters breaks down. The reason is that the van der Waals forces act over a certain distance which becomes comparable in size to the particles themselves. The approximation that work of adhesion alone is sufficient to describe adhesion then becomes unsatisfactory and a new model is needed. This chapter is the main theoretical part of the book and contains many equations. By the end, however, we are confident that readers of all backgrounds will realize that nanoscale adhesion results from several electromagnetic terms which are relevant to biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newton, I., Opticks, Smith and Walford, London 1704, reprinted Dover, New York, 1952, p. 395.

    Google Scholar 

  2. Zhang, C-Z., Wang, Z-G., Nucleation of membrane adhesions, Phys Rev E77 (2008) 021906; Washbourne, P. et al, Cell adhesion molecules in synapse formation, J Neuroscience 24 (2004) 9244–49.

    Google Scholar 

  3. Mie, G. Ann Phys (Leipzig) 11 (1903) 657

    Google Scholar 

  4. Lennard-Jones, J.E., The determination of molecular fields.1. From the variation of the viscosity of a gas with temperature, Proc R Soc Lond A106 (1924). 441–62 and 709–18

    Google Scholar 

  5. Lennard-Jones, J.E. and Taylor, P.A., Some theoretical calculations of the physical properties of certain crystals, Proc R Soc Lond, A109 (1925) 476–508; Lennard-Jones, J.E. and Dent, B.M., Proc R Soc Lond, A112 (1926) 230–234.

    Google Scholar 

  6. Borg, R.J., Diennes, G.J., The physical chemistry of solids, Academic Press US 1992, pp 101–110.

    Google Scholar 

  7. Morse, P.M., Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys Rev 34 (1929) 57–64.

    CAS  Google Scholar 

  8. London, F., The general theory of molecular forces, Trans Faraday Soc 33 (1937) 8–26.

    Article  CAS  Google Scholar 

  9. Tabor, D. and Winterton, R. H. S., “The Direct Measurement of. Normal and Retarded van der Waals Forces”, Proc. Roy. Soc. A312 (1969) 435–50.

    Google Scholar 

  10. Israelachvili, J.N. Intermolecular and Surface Forces, Academic Press, London 1985, pp. 198–201.

    Google Scholar 

  11. Kendall, K., Molecular adhesion and its applications, Kluwer, New York 2001, ch 6.

    Google Scholar 

  12. Hamaker, H C., The London van der Waals attraction between spherical particles, Physica 4 (1937) 1058–72.

    Article  CAS  Google Scholar 

  13. Israelachvili, J.N., Pashley, R.M., The Hydrophobic Interaction is Long Range, Decaying, Exponentially with Distance., Nature 300 (1982) 341–342; Pashley, R.M.. and Israelachvili J.N., J Colloid Interface Sci 101 (1984) 511–23.

    Google Scholar 

  14. Smith, W. (ed) Molecular Simulation, 32 (2006) 933–1121.

    Article  CAS  Google Scholar 

  15. Yong, C.W., Smith, W., Kendall, K., Surface contact studies of NaCl and TiO2: molecular dynamics simulation studies, J Mater Chem. 12 (2002) 2807–15.

    Article  CAS  Google Scholar 

  16. Yong, C.W., Kendall, K., Smith, W., Atomistic studies of surface adhesions using molecular dynamics simulations, Phil Trans R Soc A362 (2004) 1915–29.

    Google Scholar 

  17. Yong, C.W., Smith, W., Dhir, A., Kendall, K., Transition from elastic to plastic deformation as asperity contact size is increased, Tribology Lett. 26 (2007) 235–8.

    Article  CAS  Google Scholar 

  18. www.fuelcells.bham.ac.uk movie of NaCl molecular dynamics contact.

  19. Miesbauer, O., Gotzinger, M., Peukert, W., Molecular dynamics simulations of the contact between two NaCl nanocrystals:adhesion, jump to contact and indentation, Nanotechnology 14 (2003) 371–76.

    Article  CAS  Google Scholar 

  20. Du, Y., Adams, G.G., McGruer, N.E., Etsion, I., A parameter study of separation modes of adhering microcontacts, J Appl Phys 103 (2008) 064902.

    Article  Google Scholar 

  21. Quesnel, D.J., Rimai, D.S., DeMejo, L.P., J Adhesion 67 (1998) 235–57.

    Article  CAS  Google Scholar 

  22. Kendall, K., Yong, C.W., Smith, W., Particle adhesion at the nanoscale, J Adhesion 80 (2004) 21–36.

    Article  CAS  Google Scholar 

  23. Berendsen, H.J.C., Postma, J.P.M.,Van Gunsteren, W.F., DiNola, A., Haak, J.R., Molecular dynamics with coupling to an external bath, J Chem Phys 81 (1984) 3684–90.

    Article  CAS  Google Scholar 

  24. Kendall, K., The impossibility of comminuting small particles by compression, Nature 272 (1978) 710–11.

    Article  CAS  Google Scholar 

  25. Kendall, K., Complexities of compression failure, Proc R Soc London A361 (1978) 245–63.

    Google Scholar 

  26. Kendall, K., Yong, C.W., Smith, W., Deformation of NaCl particle in contact at the nanoscale, Powder Technol 174 (2007) 2–5.

    Article  CAS  Google Scholar 

  27. Maier, S., Gnecco, E., Baratoff, A., Bennewitz, R., Meyer, E., Atomic-scale friction modulated by a buried interface: Combined atomic and friction force microscopy experiments, Phys. Rev. B 78 (2008) 045432.

    Google Scholar 

  28. Kendall, K., Dhir, A., Yong, C.W., Strength by Atomic Force Microscopy: squeezing water from an MgO suface, Phil Mag 2010 in press.

    Google Scholar 

  29. Langmuir I, The adsorption of gases on plane surfaces of glass, mica and platinum, J Am Chem Soc 40 (1918) 1361–1403.

    Article  CAS  Google Scholar 

  30. Faraday, M., The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light Phil. Trans. R. Soc. Lond. January 1, 147 (1857) 145–181.

    Article  Google Scholar 

  31. Napper, D.H., Polymeric Stabilization of Colloidal Dispersions, Academic Press, New York, 1983.

    Google Scholar 

  32. Yamakawa, H., Modern Theory of Polymer Solutions, Harper and Row, London, 1971.

    Google Scholar 

  33. Milling, A.J. and Kendall, K., AFM of silica in polyacrylic acid solutions, Langmuir (1998); Milling, A.J. (ed) Surface Characterization Methods, Surfactant Science Series Vol 87, Marcel Dekker, New York, 1999, ch.3.

    Google Scholar 

  34. Asakura, S. and Oosawa, F., J Chem Phys 22 (1954). 1255–6.

    CAS  Google Scholar 

  35. Asakura, S. and Oosawa, F., J Poly Sci 33 (1958). 183–92.

    Article  CAS  Google Scholar 

  36. McDonald RE, Fleming RI, Beeley JG, Bovell DL, Lu JR, et al., Latherin: A Surfactant Protein of Horse Sweat and Saliva. PLoS ONE 4 (5) (2009) e5726. doi:10.1371/journal.pone.0005726.

    Article  Google Scholar 

  37. Thurlbeck, W.M., Churg, A.M., Myers, J.L., Tazelaar, H.D., Wright, J.L., Thurlbeck’s pathology of the lung, 3rd ed.,Thieme 2005, p 52.

    Google Scholar 

  38. Whitsett, J.A., Weaver, T.E., Hydrophobic surfactant proteins in lung function and disease, N Engl J Med 347 (2002) 2141–8

    Article  Google Scholar 

  39. Kishore U., Greenhough, T.J. et al, Surfactant Proteins SP-A and SP-D; Structure, function and receptors, Molecular Immunology 43 (2006) 1293–1315.

    Article  CAS  Google Scholar 

  40. Nnanna, I.A., Xia, J. (eds) Protein-based surfactants, Surfactant Science Series 101, Marcel Dekker, New York, 2001.

    Google Scholar 

  41. Efimova, Y.M., Proteins at surfaces, Delft University Press 2006.

    Google Scholar 

  42. Corni, S., Calzolari, A., di Felice, R., et al Protein surface interactions mediated by water, Lecture at Edinburgh conference (2008) deisa.eu

    Google Scholar 

  43. Hortsch, M., Nott, P., New Cell Adhesion research, Nova Science 2009; Umemori, H., The sticky synapse: Cell adhesion molecules, Springer Berlin 2009; Garrod, D.R., Structure and function in cell adhesion, Portland Press 2008; La Flamme, S.E., Kowalczyk, A.P., (eds.), Wiley VCH Weinheim 2008; Cell junctions, Adhesion…, Cress, A.E., Nagle, R.B., (eds.), Cell adhesion and cytoskeletal molecules in metastasis, Springer, Dordrecht 2006; Beckerle, M.C., (ed.), Cell Adhesion, Oxford University Press 2002; Ley, K., (ed.), Adhesion molecules: function and inhibition, Birkhauser, Basel 2007; Reutter, W., Schuppan, D., Tauber, R., Zeitz, M., Falk symposium, Cell adhesion molecules in health and disease, Kluwer 2003; Coutts, A.S., Adhesion protein protocols, Humana Press London 2nd Ed 2007; Behrens, J., Nelson, W.J., Cell adhesion, Springer Berlin 2004; Collins, T., Leukocyte recruitment, endothelial cell adhesion molecules…, Kluwer Dordrecht 2001; Barker, J., McGrath, J., (eds.), Cell adhesion and migration…, Harwood Academic Amsterdam 2001; Guan, JL., (ed.), Signalling through cell adhesion molecules, CRC Press USA 1999; Hamann, A., Adhesion molecules and chemokynes in lymphocyte trafficking, Harwood Academic Amsterdam 2002; Pearson, J.D., (ed.) Vascular adhesion molecules and inflammation, Birkhauser, Basel 1999;

    Google Scholar 

  44. Kendall, K., Dhir, A., Du, S., Yong, C.W., Adhesion of viruses to particles, 2010, in preparation.

    Google Scholar 

  45. Isacke, C.M., Horton, M.A., The adhesion molecule facts book, Academic London 2000

    Google Scholar 

  46. Barclay, A.N. et al, The leucocyte antigen factsbook, 2nd ed. Academic Press, London (1997).

    Google Scholar 

  47. http://www.cell-adhesion.net http://www.ncbi.nlm.nih.gov/prow/cd/index_molecule.htm

  48. Cooke, I.R., and Deserno, M., Coupling between lipid shape and membrane curvature. Biophys. J. 91 (2006) 487–495

    Article  CAS  Google Scholar 

  49. Cooke, I.R., Kremer, K., and Deserno, M., Tunable generic model for fluid bilayer membranes. Part 1. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72 (2005) 011506.

    Google Scholar 

  50. Illya, G., Deserno, M., Coarse grained simulation studies of peptide induced pore formation, Biophys J., 95 (2008) 4163–4173.

    Article  CAS  Google Scholar 

  51. Tsigelny, I.F., Sharikov, Y., Miller, M.A., Masliah, E., Simulation and modeling of synuclein-based protofibril structures as a means of understanding the molecular basis of Parkinson’s disease, J Phys: conference series 125 (2008) 012056.

    Article  Google Scholar 

  52. Kendall, K., Dhir, A., Yong, C.W., Adhesion J., Model of protein molecule equilibriating on an MgO surface, 2010, J. Adhesion to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Kendall .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kendall, K., Kendall, M., Rehfeldt, F. (2010). Modelling Nanoparticle, Virus and Cell Adhesion. In: Adhesion of Cells, Viruses and Nanoparticles. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2585-2_3

Download citation

Publish with us

Policies and ethics