Skip to main content

Supramolecular Enzyme Mimics

  • Chapter
  • First Online:

Abstract

The reliance of enzymes on the weak reversible interactions central to supramolecular chemistry is discussed. Specific examples are described in more detail (haemoglobin, myoglobin, cytochromes, catalytic pro- and antioxidants, photosystems, copper and zinc containing enzymes) together with their supramolecular analogues. Artificial systems for photosynthesis, cyclodextrins as artificial enzyme supports, and model enzymes that do not require metals are considered. Other non-biological systems that rely on reversible complementary interactions (molecular imprinted polymers, combinatorial polymers, and dynamic combinatorial libraries) are described. De novo design and evolutionary development of enzymes is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kühne WF (1877) Erfahrungen und Bemerkungen über Enzyme und Fermente Untersuchungen a d physiol. Institut der Universität Heidelberg 1:291–324

    Google Scholar 

  2. Buchner E (1907) Nobel prize lecture

    Google Scholar 

  3. Sumner JB (1926) The isolation of the enzyme urease: preliminary paper. J Biol Chem 69:435–441

    CAS  Google Scholar 

  4. Northrop JH (1930) Crystalline pepsin. J Gen Physiol 13:739–766

    Article  CAS  Google Scholar 

  5. Stanley WM (1935) Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science 81:644–645

    Article  CAS  Google Scholar 

  6. Blake CCF et al (1965) Structure of hen egg-white lysozyme: a three-dimensional fourier synthesis at 2 Å resolution. Nature 206:757–761

    Article  CAS  Google Scholar 

  7. Jabri E et al (1995) The crystal structure of urease from Klebsiella aerogenes. Science 268:998–1004 PDBID:2KAU

    Article  CAS  Google Scholar 

  8. Koshland DE (1994) The key-lock theory and the induced fit theory. Angew Chem Int Ed Engl 33:2375–2378

    Article  Google Scholar 

  9. Brink C et al (1955) Structure of vitamin B12: X-ray crystallographic evidence on the structure of vitamin B12. Nature 174:1169–1171

    Article  Google Scholar 

  10. Woodward RB (1973) The total synthesis of vitamin B12. Pure Appl Chem 33:145–177

    Article  CAS  Google Scholar 

  11. Dreos R, Siega P (2006) Kinetics and mechanism of metallacyclization in a chloromethylcobalt complex with a salen-type ligand. Organomet 25:5180–5183

    Article  CAS  Google Scholar 

  12. Baudry M et al (1993) Salen-manganese complexes are superoxide dismutase-mimics. Biochem Biophys Res Com 192:964–968

    Article  CAS  Google Scholar 

  13. Avvaru BS et al (2010) A short, strong hydrogen bond in the active site of human carbonic anhydrase II. Biochem 49:249–251 PDBID:3KS3

    Article  CAS  Google Scholar 

  14. Mullis K (1999) Dancing naked in the mind field Bloomsbury, New York, NY, pp 3–14

    Google Scholar 

  15. Ventor JC (2007) A DNA-driven world (Richard Dimbleby Lecture). http://www.bbc.co.uk/print/pressoffice/pressreleases/stories/2007/12_december/05/dimbleby.shtml

  16. Xu Y et al (2006) A new strategy for structure determination of large proteins in solution without deuteration. Nat Methods 3:931–937 PDBID:2H35

    Article  CAS  Google Scholar 

  17. Collman JP et al (1973) Reversible oxygen adduct formation in ferrous complexes derived from a picket fence porphyrin – model for oxymyoglobin. J Am Chem Soc 95:7868–7870

    Article  CAS  Google Scholar 

  18. Collman JP et al (1975) ‘Picket fence porphyrins’. Synthetic models for oxygen binding hemoproteins. J Am Chem Soc 97:1427–1439

    Article  CAS  Google Scholar 

  19. Almog et al (1975) Condensation of tetraaldehydes with pyrrole. Direct synthesis of ‘capped’ porphyrins. J Am Chem Soc 97:226–227

    Article  CAS  Google Scholar 

  20. MacMunn CA (1886) Researches on myohaematin and the histohaematins. Phil Trans R Soc 177:276–298

    Google Scholar 

  21. Keilin D (1925) On cytochrome, a respiratory pigment, common to animals, yeast, and higher plants. Proc R Soc Lond B 98:312–339

    Article  Google Scholar 

  22. Groves JT, Neumann R (1989) Regioselective oxidation catalysis in synthetic phospholipid-vesicles – membrane-spanning steroidal metalloporphyrins. J A Chem Soc 111:2900–2909

    Article  CAS  Google Scholar 

  23. Yang J, Breslow R (2000) Selective hydroxylation of a steroid at C-9 by an artificial cytochrome P-450. Angew Chem Int Ed 39:2692–2694

    Article  CAS  Google Scholar 

  24. Breslaw R, Overman LE (1970) An ‘artificial enzyme’ combining a metal catalytic group and a hydrophobic binding cavity. J Am Chem Soc 94:1075–1077

    Article  Google Scholar 

  25. Strange RW et al (2007) Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu-Zn superoxide dismutase. Proc Natl Acad Sci USA 104:10040 PDBID:2V0A

    Article  CAS  Google Scholar 

  26. Quint P et al (2006) Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation. Free Radic Biol Med 40:453–458 PDBID:2ADQ

    Article  CAS  Google Scholar 

  27. Melov S et al (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289:1567–1569

    Article  CAS  Google Scholar 

  28. Keaney M, Gems D (2003) No increase in lifespan in Caenorhabditis elegans upon treatment with the superoxide dismutase mimetic EUK-8. Free Rad Biol Med 34:277–282

    Article  CAS  Google Scholar 

  29. Gonzalez PK et al (1996) Role of oxidant stress in the adult respiratory distress syndrome: Evaluation of a novel antioxidant strategy in a porcine model of endotoxin-induced acute lung injury. Shock 6:S23–S26

    Article  Google Scholar 

  30. Fucassi F et al (2001) Characterisation of small molecule binding to DNA using a quartz crystal resonant sensor. Chem Commun 841–842

    Google Scholar 

  31. Fucassi F et al (2007) α-Lipoic acid and glutathione protect against the prooxidant activity of SOD/catalase mimetic salen Mn(III) derivatives. J Inorg Biochem 101:225–232

    Article  CAS  Google Scholar 

  32. Lancaster KM et al (2009) Type-zero copper proteins. Nat Chem 1:711–715 PDBID:3FPY

    Article  CAS  Google Scholar 

  33. Hart PD et al (1996) A missing link in cupredoxins: crystal structure of cucumber stellacyanin at 1.6 Å resolution. Protein Sci 5:2175–2183 PDBID:1JER

    Article  CAS  Google Scholar 

  34. Hazes B et al (1993) Crystal structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 Å resolution: clues for a mechanism for allosteric regulation. Protein Sci 2:597–619 PDBID:1NOL

    Article  CAS  Google Scholar 

  35. Sénèque O et al (2000) Calix[6]arenes and zinc: biomimetic receptors for neutral molecules. J Am Chem Soc 122:6183–6189

    Article  Google Scholar 

  36. Cacciapaglia R et al (2007) Efficient and selective cleavage of RNA oligonucleotides by calix[4]arene-based synthetic metallonucleases. J Am Chem Soc 129:12512–12520

    Article  CAS  Google Scholar 

  37. Collman JP et al (2007) A cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting flux. Science 315:1565–1568

    Article  CAS  Google Scholar 

  38. Qin L et al (2009) Redox dependent conformational changes in cytochrome c oxidase suggest a gating mechanism for proton uptake. Biochem 48:5121–5130 PDBID:3FYI

    Article  CAS  Google Scholar 

  39. Pallares I et al (2008) Direct interaction between a human digestive protease and the mucoadhesive poly(acrylic acid). Acta Cryst Sect D 64:784–791 PDBID:2V77

    Article  Google Scholar 

  40. Rondelez Y et al (2002) The first water-soluble copper(II) calix[6]arene complex presenting a hydrophobic ligand binding pocket: a remarkable model for active sites in metalloenzymes. Angew Chem Int Ed Engl 41:1044–1046

    Article  CAS  Google Scholar 

  41. Rubach JK, Plapp BV (2002) Mobility of fluorobenzyl alcohols bound to liver alcohol dehydrogenases as determined by NMR and X-ray crystallographic studies. Biochem 41:15770–15779

    Article  CAS  Google Scholar 

  42. Kimura E et al (1992) A model for catalytically active zinc(II) ion in liver alcohol dehydrogenase: a novel ‘hydride transfer’ reaction catalyzed by zinc (II)-macrocyclic polyamine complexes. J Am Chem Soc 114:10134–10137

    Article  CAS  Google Scholar 

  43. Cronin L, Walton PH (2003) Synthesis and structure of [Zn(OMe)(L)]·[Zn(OH)(L)]·2(BPh4), L = cis,cis-1,3,5-tris[E,E)-3-(2-furyl)acrylideneamino]cyclohexane: structural models of carbonic anhydrase and liver alcohol dehydrogenase. Chem Commun 1572–1573

    Google Scholar 

  44. Koike T, Kimura E (1991) Roles of zinc(II) ion in phosphatases – a model study with zinc(II) macrocyclic polyamine complexes. J Am Chem Soc 113:8935–8941

    Article  CAS  Google Scholar 

  45. Molenveld P et al (1999) Dinuclear and trinuclear Zn(II) calix[4]arene complexes as models for hydrolytic metallo-enzymes. Synthesis and catalytic activity in phosphate diester transesterification. J Org Chem 64:3896–3906

    Article  CAS  Google Scholar 

  46. Laine M et al (2009) Base moiety selectivity in cleavage of short oligoribonucleotides by di- and tri-nuclear Zn(II) complexes of azacrown-derived ligands. Org Biomol Chem 7:2780–2787

    Article  CAS  Google Scholar 

  47. Hammarström L (2003) Towards artificial photosynthesis: ruthenium-manganese chemistry mimicking photosystem II reactions. Curr Opin Chem Biol 7:666–673

    Article  Google Scholar 

  48. Börjesson K et al (2009) Membrane-anchored DNA assembly for energy and electron transfer. J Am Chem Soc 131:2831–2839

    Article  Google Scholar 

  49. Chang SK et al (1991) Hydrogen-bonding and molecular recognition – synthetic, complexation, and structural studies on barbiturate binding to an artificial receptor. J Am Chem Soc 113:7640–7645

    Article  CAS  Google Scholar 

  50. Tecilla P et al (1990) Hydrogen-bonding self-assembly of multichromophore structures. J Am Chem Soc 112:9408–9410

    Article  CAS  Google Scholar 

  51. Ferreira KN et al (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  Google Scholar 

  52. Youngblood WJ et al (2009) Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J Am Chem Soc 131:926–927

    Article  CAS  Google Scholar 

  53. Kanan MW, Nocera DG (2008) In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321:1072–1075

    Article  CAS  Google Scholar 

  54. Kim DH, Lee SS (2000) Origin of rate-acceleration in ester hydrolysis with metalloprotease mimics. Bioorg Med Chem 8:647–652

    Article  CAS  Google Scholar 

  55. Hosseini MW et al (1987) Supramolecular catalysis in the hydrolysis of ATP facilitated by macrocyclic polyamines: mechanistic studies. J Am Chem Soc 109:537–544

    Article  CAS  Google Scholar 

  56. Hosseini MW, Blacker AJ, Lehn JM (1988) Multiple molecular recognition and catalysis. Nucleotide binding and ATP hydrolysis by a receptor molecule bearing an anion binding site, an intercalator group, and a catalytic site. J Chem Soc Chem Commun 596–598

    Google Scholar 

  57. Liu J, Wulff G (2008) Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers. J Am Chem Soc 130:8044–8054

    Article  CAS  Google Scholar 

  58. Visnjevski A et al (2005) Catalysis of a Diels-Alder cycloaddition with differently fabricated molecularly imprinted polymers. Cat Commun 6:601–606

    Article  CAS  Google Scholar 

  59. Lehn JM (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463

    Article  CAS  Google Scholar 

  60. Rowan SJ et al (2002) Dynamic covalent chemistry. Angew Chem Int Ed Engl 41:898–952

    Article  Google Scholar 

  61. Jiang L et al (2008) De novo computational design of retro-aldol enzymes. Science 319:1387–1391

    Article  CAS  Google Scholar 

  62. Röthlisberger D et al (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Cragg .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cragg, P.J. (2010). Supramolecular Enzyme Mimics. In: Supramolecular Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2582-1_4

Download citation

Publish with us

Policies and ethics