Skip to main content

Applications to Rainfall Data

  • Chapter
  • First Online:
Chaos in Hydrology
  • 1287 Accesses

Abstract

Initial applications of the ideas of chaos theory in hydrology were on rainfall data. Early studies essentially addressed the identification and prediction of chaotic behavior of rainfall data. Encouraging outcomes from these studies subsequently led to investigations on the chaotic nature of scaling relationships in rainfall and disaggregation of data, including development of a new chaotic approach for rainfall disaggregation. More recently, some studies have examined the spatial variability and classification of rainfall. In addition to these, a number of studies have also addressed the important methodological and data issues in the applications of chaos methods to rainfall data. This chapter presents a review of chaos studies on rainfall data. The presentation is organized into three parts to address three important problems associated with rainfall: identification and prediction of chaos, scaling and disaggregation, and spatial variability and classification. An example is presented for each of these to demonstrate the utility and effectiveness of chaos concepts and methods to study these different problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarbanel HDI (1996) Analysis of observed chaotic data. Springer, New York

    Book  Google Scholar 

  • Berndtsson R, Jinno K, Kawamura A, Olsson J, Xu S (1994) Dynamical systems theory applied to long-term temperature and precipitation time series. Trends Hydrol 1:291–297

    Google Scholar 

  • Casdagli M (1989) Nonlinear prediction of chaotic time series. Physica D 35:335–356

    Article  Google Scholar 

  • Casdagli M (1992) Chaos and deterministic versus stochastic nonlinear modeling. J Royal Stat Soc B 54(2):303–328

    Google Scholar 

  • Dhanya CT, Nagesh Kumar D (2010) Nonlinear ensemble prediction of chaotic daily rainfall. Adv Water Resour 33:327–347

    Article  Google Scholar 

  • Dhanya CT, Nagesh Kumar D (2011) Multivariate nonlinear ensemble prediction of daily chaotic rainfall with climate inputs. J Hydrol 403:292–306

    Article  Google Scholar 

  • Farmer DJ, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848

    Article  Google Scholar 

  • Fraedrich K (1986) Estimating the dimensions of weather and climate attractors. J Atmos Sci 43:419–432

    Article  Google Scholar 

  • Fraedrich K (1987) Estimating weather and climate predictability on attractors. J Atmos Sci 44:722–728

    Article  Google Scholar 

  • Gaume E, Sivakumar B, Kolasinski M, Hazoumé L (2006) Identification of chaos in rainfall disaggregation: application to a 5-minute point series. J Hydrol 328(1–2):56–64

    Article  Google Scholar 

  • Georgakakos KP, Sharifi MB, Sturdevant PL (1995) Analysis of high-resolution rainfall data. In: Kundzewicz ZW (ed) New uncertainty concepts in hydrology and water resources. Cambridge University Press, New York, pp 114–120

    Chapter  Google Scholar 

  • Ghilardi P, Rosso R (1990) Comment on “Chaos in rainfall”. Water Resour Res 26(8):1837–1839

    Google Scholar 

  • Gilmore CG (1993) A new test for chaos. J Econ Behav Organ 22:209–237

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983a) Measuring the strangeness of strange attractors. Physica D 9:189–208

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983b) Characterisation of strange attractors. Phys Rev Lett 50(5):346–349

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983c) Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591–2593

    Article  Google Scholar 

  • Hense A (1987) On the possible existence of a strange attractor for the southern oscillation. Beitr Phys Atmos 60(1):34–47

    Google Scholar 

  • Islam S, Bras RL, Rodriguez-Iturbe I (1993) A possible explanation for low correlation dimension estimates for the atmosphere. J Appl Meteor 32:203–208

    Article  Google Scholar 

  • Jayawardena AW, Gurung AB (2000) Noise reduction and prediction of hydrometeorological time series: dynamical systems approachvs. stochastic approach. J Hydrol 228:242–264

    Article  Google Scholar 

  • Jayawardena AW, Lai F (1994) Analysis and prediction of chaos in rainfall and stream flow time series. J Hydrol 153:23–52

    Article  Google Scholar 

  • Jayawardena AW, Li WK, Xu P (2002) Neighborhood selection for local modeling and prediction of hydrological time series. J Hydrol 258:40–57

    Article  Google Scholar 

  • Jin YH, Kawamura A, Jinno K, Berndtsson R (2005) Nonlinear multivariate analysis of SOI and local precipitation and temperature. Nonlinear Processes Geophys 12:67–74

    Article  Google Scholar 

  • Jothiprakash V, Fathima TA (2013) Chaotic analysis of daily rainfall series in Koyna reservoir catchment area, India. Stoch Environ Res Risk Assess 27:1371–1381

    Article  Google Scholar 

  • Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase space reconstruction using a geometric method. Phys Rev A 45:3403–3411

    Article  Google Scholar 

  • Kim HS, Eykholt R, Salas JD (1999) Nonlinear dynamics, delay times, and embedding windows. Physica D 127(1–2):48–60

    Article  Google Scholar 

  • Kim HS, Lee KH, Kyoung MS, Sivakumar B, Lee ET (2009) Measuring nonlinear dependence in hydrologic time series. Stoch Environ Res Risk Assess 23:907–916

    Article  Google Scholar 

  • Koutsoyiannis D (2006) On the quest for chaotic attractors in hydrological processes. Hydrol Sci J 51(6):1065–1091

    Article  Google Scholar 

  • Koutsoyiannis D, Pachakis D (1996) Deterministic chaos versus stochasticity in analysis and modeling of point rainfall series. J Geophys Res 101(D21):26441–26451

    Article  Google Scholar 

  • Kyoung MS, Kim HS, Sivakumar B, Singh VP, Ahn KS (2011) Dynamic characteristics of monthly rainfall in the Korean peninsula under climate change. Stoch Environ Res Risk Assess 25(4):613–625

    Article  Google Scholar 

  • Puente CE, Obregon N (1996) A deterministic geometric representation of temporal rainfall. Results for a storm in Boston. Water Resour Res 32(9):2825–2839

    Article  Google Scholar 

  • Rodriguez-Iturbe I, De Power FB, Sharifi MB, Georgakakos KP (1989) Chaos in rainfall. Water Resour Res 25(7):1667–1675

    Article  Google Scholar 

  • Rodriguez-Iturbe I, De Power FB, Sharifi MB, Georgakakos KP (1990) Reply. Water Resour Res 26(8):1841–1842

    Article  Google Scholar 

  • Schertzer D, Tchiguirinskaia I, Lovejoy S, Hubert P, Bendjoudi H (2002) Which chaos in the rainfall-runoff process? A discussion on ‘Evidence of chaos in the rainfall-runoff process’ by Sivakumar et al. Hydrol Sci J 47(1):139–147

    Google Scholar 

  • Schouten JC, Takens F, van den Bleek CM (1994) Estimation of the dimension of a noisy attractor. Phys Rev E 50(3):1851–1861

    Article  Google Scholar 

  • Schreiber T (1993) Extremely simple nonlinear noise reduction method. Phys Rev E 47(4):2401–2404

    Article  Google Scholar 

  • Schreiber T, Kantz H (1996) Observing and predicting chaotic signals: is 2 % noise too much? In: Kravtsov YuA, Kadtke JB (eds) Predictability of complex dynamical systems. Springer Series in Synergetics. Springer, Berlin, pp 43–65

    Google Scholar 

  • Sharifi MB, Georgakakos KP, Rodriguez-Iturbe I (1990) Evidence of deterministic chaos in the pulse of storm rainfall. J Atmos Sci 47:888–893

    Article  Google Scholar 

  • Sivakumar B (2000) Chaos theory in hydrology: important issues and interpretations. J Hydrol 227(1–4):1–20

    Article  Google Scholar 

  • Sivakumar B (2001a) Rainfall dynamics at different temporal scales: a chaotic perspective. Hydrol Earth Syst Sci 5(4):645–651

    Article  Google Scholar 

  • Sivakumar B (2001b) Is a chaotic multi-fractal approach for rainfall possible? Hydrol Process 15(6):943–955

    Article  Google Scholar 

  • Sivakumar B (2004) Chaos theory in geophysics: past, present and future. Chaos Soliton Fract 19(2):441–462

    Article  Google Scholar 

  • Sivakumar B (2005) Chaos in rainfall: variability, temporal scale and zeros. J Hydroinform 7(3):175–184

    Google Scholar 

  • Sivakumar B (2009) Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward. Stoch Environ Res Risk Assess 23:1027–1036

    Article  Google Scholar 

  • Sivakumar B, Liong SY, Liaw CY (1998) Evidence of chaotic behavior in Singapore rainfall. J Am Water Resour Assoc 34(2):301–310

    Article  Google Scholar 

  • Sivakumar B, Liong SY, Liaw CY, Phoon KK (1999a) Singapore rainfall behavior: chaotic? ASCE J Hydrol Eng 4(1):38–48

    Article  Google Scholar 

  • Sivakumar B, Phoon KK, Liong SY, Liaw CY (1999b) A systematic approach to noise reduction in chaotic hydrological time series. J Hydrol 219(3–4):103–135

    Article  Google Scholar 

  • Sivakumar B, Phoon KK, Liong SY, Liaw CY (1999c) Comment on “Nonlinear analysis of river flow time sequences” by Amilcare Porporato and Luca Ridolfi. Water Resour Res 35(3):895–897

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Olsson J, Jinno K, Kawamura A (2000) Dynamics of monthly rainfall-runoff process at the Göta basin: A search for chaos. Hydrol Earth Syst Sci 4(3):407–417

    Article  Google Scholar 

  • Sivakumar B, Berndttson R, Olsson J, Jinno K (2001a) Evidence of chaos in the rainfall-runoff process. Hydrol Sci J 46(1):131–145

    Article  Google Scholar 

  • Sivakumar B, Sorooshian S, Gupta HV, Gao X (2001b) A chaotic approach to rainfall disaggregation. Water Resour Res 37(1):61–72

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Olsson J, Jinno K (2002) Reply to ‘which chaos in the rainfall-runoff process?’ by Schertzer et al. Hydrol Sci J 47(1):149–158

    Google Scholar 

  • Sivakumar B, Wallender WW, Horwath WR, Mitchell JP, Prentice SE, Joyce BA (2006) Nonlinear analysis of rainfall dynamics in California’s Sacramento Valley. Hydrol Process 20(8):1723–1736

    Article  Google Scholar 

  • Sivakumar B, Woldemeskel FM, Puente CE (2014) Nonlinear analysis of rainfall variability in Australia. Stoch Environ Res Risk Assess 28:17–27

    Article  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, Lecture notes in mathematics 898. Springer, Berlin, pp 366–381

    Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  Google Scholar 

  • Tsonis AA (1992) Chaos: from theory to applications. Plenum Press, New York

    Book  Google Scholar 

  • Tsonis AA, Georgakakos KP (2005) Observing extreme events in incomplete state spaces with application to rainfall estimation from satellite images. Nonlinear Processes Geophys 12:195–200

    Article  Google Scholar 

  • Tsonis AA, Elsner JB, Georgakakos KP (1993) Estimating the dimension of weather and climate attractors: important issues about the procedure and interpretation. J Atmos Sci 50:2549–2555

    Article  Google Scholar 

  • Tsonis AA, Triantafyllou GN, Elsner JB, Holdzkom JJ II, Kirwan AD Jr (1994) An investigation on the ability of nonlinear methods to infer dynamics from observables. Bull Amer Meteor Soc 75:1623–1633

    Article  Google Scholar 

  • Waelbroeck H, Lopex-Pena R, Morales T, Zertuche F (1994) Prediction of tropical rainfall by local phase space reconstruction. J Atmos Sci 51(22):3360–3364

    Article  Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano A (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sivakumar, B. (2017). Applications to Rainfall Data. In: Chaos in Hydrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2552-4_9

Download citation

Publish with us

Policies and ethics