Skip to main content

Chaos Identification and Prediction Methods

  • Chapter
  • First Online:

Abstract

Considerable interest in studying the chaotic behavior of natural, physical, and socio-economic systems have led to the development of many different methods for identification and prediction of chaos. An important commonality among almost all of these methods is the concept of phase space reconstruction. Other than this, the methods largely have different bases and approaches and often aim to identify different measures of chaos. All these methods have been successfully applied in many different scientific fields. This chapter describes some of the most popular methods for chaos identification and prediction, especially those that have found applications in hydrology. These methods include: phase space reconstruction, correlation dimension method, false nearest neighbor method, Lyapunov exponent method, Kolmogorov entropy method, surrogate data method, Poincaré maps, close returns plot, and nonlinear local approximation prediction method. To put the utility of these methods in a proper perspective in the identification of chaos, the superiority of two of these methods (phase space reconstruction and correlation dimension) over two commonly used linear tools for system identification (autocorrelation function and power spectrum) is also demonstrated. Further, as the correlation dimension method has been the most widely used method for chaos identification, it is discussed in far more detail.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abarbanel HDI (1996) Analysis of observed chaotic data. Springer-Verlag, New York, USA

    Book  Google Scholar 

  • Abarbanel HDI, Brown R, Kadtke JB (1990) Prediction in chaotic nonlinear systems: methods for time series with broadband Fourier spectra. Phys Rev A 41(4):1782–1807

    Article  Google Scholar 

  • Aittokallio T, Gyllenberg M, Hietarinta J, Kuusela T, Multamäki T (1999) Improving the false nearest neighbors method with graphical analysis. Phys Rev 60:416–421

    Google Scholar 

  • Bonachela JA, Hinrichsen H, Munoz M (2008) Entropy estimations of small data set. J Phys A: Math Theor 41:202001

    Article  Google Scholar 

  • Breakspear M, Brammer M, Robinson PA (2003) Construction of multivariate surrogate sets from nonlinear data using the wavelet transform. Physica D 182:1–22

    Article  Google Scholar 

  • Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20:217–236

    Article  Google Scholar 

  • Cao L, Mees A, Judd K (1998) Dynamics from multivariate time series. Physica D 121:75–88

    Article  Google Scholar 

  • Carona A (2000) Adaptive box-assisted algorithm for correlation-dimension estimation. Phys Rev E 62:7872–7881

    Article  Google Scholar 

  • Casdagli M (1989) Nonlinear prediction of chaotic time series. Physica D 35:335–356

    Article  Google Scholar 

  • Casdagli M (1992) Chaos and deterministic versus stochastic nonlinear modeling. J Royal Stat Soc B 54(2):303–328

    Google Scholar 

  • Diks C (1999) Nonlinear time series analysis, methods and applications. World Sci, Singapore

    Book  Google Scholar 

  • Dolan K, Spano ML (2001) Surrogates for nonlinear time series analysis. Phys Rev E 64:046128–1–046128-6

    Google Scholar 

  • Eckmann JP, Ruelle D (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57(3):617–656

    Article  Google Scholar 

  • Eckmann JP, Kamphorst SO, Ruelle D, Ciliberto S (1986) Lyapunov exponents from a time series. Phys Rev A 34:4971–4979

    Article  Google Scholar 

  • Elsner JB, Tsonis AA (1992) Nonlinear prediction, chaos and noise. Bull Amer Meteor Soc 73:49–60

    Article  Google Scholar 

  • Elsner JB, Tsonis AA (1996) Singular spectrum analysis: a new tool in time series analysis. Plenum Press, New York

    Book  Google Scholar 

  • Engbert R (2002) Testing for nonlinearity: the role of surrogate data. Chaos Soliton Fract 13(1):79–84

    Article  Google Scholar 

  • Farmer DJ, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848

    Article  Google Scholar 

  • Fraedrich K (1986) Estimating the dimensions of weather and climate attractors. J Atmos Sci 43:419–432

    Article  Google Scholar 

  • Fredkin DR, Rice JA (1995) Method of false nearest neighbors: a cautionary note. Phys Rev E 51(4):2950–2954

    Article  Google Scholar 

  • Gilmore CG (1993) A new test for chaos. J Econ Behav Organ 22:209–237

    Article  Google Scholar 

  • Grassberger P (1983) Generalized dimension of strange attractors. Phys Lett A 97(6):227–230

    Article  Google Scholar 

  • Grassberger P (1990) An optimized box-assisted algorithm for fractal dimensions. Phys Lett A 148:63–68

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983a) Measuring the strangeness of strange attractors. Physica D 9:189–208

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983b) Characterisation of strange attractors. Phys Rev Lett 50(5):346–349

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983c) Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A 28:2591–2593

    Article  Google Scholar 

  • Hausdorff F (1919) Dimension und äußeres Maß. Math. Annalen 79(1–2):157–179

    Google Scholar 

  • Havstad JW, Ehlers CL (1989) Attractor dimension of nonstationary dynamical systems from small data sets. Phys Rev A 39(2):845–853

    Article  Google Scholar 

  • Hediger T, Passamante A, Ferrell ME (1990) Characterizing attractors using local intrinsic dimensions calculated by singular-value decomposition and information-theoretic criteria. Phys Rev A 41:5325–5332

    Article  Google Scholar 

  • Hegger R, Kantz H (1999) Improved false nearest neighbor method to detect determinism in time series data. Phys Rev E 60(4):4970–4973

    Article  Google Scholar 

  • Henon M (1976) A two-dimensional mapping with a strange attractor. Commun Math Phys 50:69–77

    Article  Google Scholar 

  • Jayawardena AW, Li WK, Xu P (2002) Neighborhood selection for local modeling and prediction of hydrological time series. J Hydrol 258:40–57

    Article  Google Scholar 

  • Jayawardena AW, Xu P, Li WK (2010) Modified correlation entropy estimation for a noisy chaotic time series. Chaos 20:023104–1–023104-11

    Article  Google Scholar 

  • Kantz H (1994) A robust method to estimate the maximal Lyapunov exponent from a time series. Phys Lett A 185:77–87

    Article  Google Scholar 

  • Kantz H, Schreiber T (2004) Nonlinear time series analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Kantz H, Schürmann T (1996) Enlarged scaling ranges for the KS-entropy and information dimension. Chaos 6:167–171

    Article  Google Scholar 

  • Kaplan JL, Yorke JA (1979) Chaotic behavior of multidimensional difference equations. In: Peitgen HO, Walther HO (eds) Functional differential equations and approximations of fixed points, Lecture Notes in Mathematics 730, Springer-Verlag, Berlin, pp 204–227

    Google Scholar 

  • Kennel MB, Abarbanel HDI (2002) False nearest neighbors and false strands: a reliable minimum embedding dimension algorithm. Phys Rev E 66(026209):1–19

    Google Scholar 

  • Kennel MB, Brown R, Abarbanel HDI (1992) Determining embedding dimension for phase space reconstruction using a geometric method. Phys Rev A 45:3403–3411

    Article  Google Scholar 

  • Keylock CJ (2007) A wavelet-based method for surrogate data generation. Physica D 225(2):219–228

    Article  Google Scholar 

  • Kugiumtzis (2001) On the reliability of the surrogate data test for nonlinearity in the analysis of noisy time series. Int J Bifurcation Chaos 11(7):1881–1896

    Article  Google Scholar 

  • Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26:636–646

    Article  Google Scholar 

  • Nerenberg MAH, Essex C (1990) Correlation dimension and systematic geometric effects. Phys Rev A 42(12):7065–7074

    Article  Google Scholar 

  • Osborne AR, Provenzale A (1989) Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35:357–381

    Article  Google Scholar 

  • Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716

    Article  Google Scholar 

  • Phoon KK, Islam MN, Liaw CY, Liong SY (2002) A practical inverse approach for forecasting of nonlinear time series. J Hydrol Engg 7(2):116–128

    Article  Google Scholar 

  • Poincaré H (1899) Les méthodes nouvelles de la méchanique céleste. Gauthier-Villars, Paris

    Google Scholar 

  • Prichard D, Theiler J (1994) Generating surrogate data for time series with several simultaneously measured variables. Phys Rev Lett 73:951–954

    Article  Google Scholar 

  • Ramdani S, Bouchara F, Casties J-F (2007) Detecting determinism in short time series using a quantified averaged false nearest neighbors approach. Phys Rev E 76(3):036204, 1–14

    Google Scholar 

  • Rényi A (1971) Probability theory. North Holland, Amsterdam

    Google Scholar 

  • Rhodes C, Morari M (1997) False-nearest-neighbor algorithm and noise-corrupted time series. Phys Rev E 55:6162–6170

    Article  Google Scholar 

  • Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65:117–134

    Article  Google Scholar 

  • Ruelle D (1980) Les attracteurs etranges. La Rech 108:132–144

    Google Scholar 

  • Ruelle D (1983) Five turbulent problems. Physica D 7:40–44

    Article  Google Scholar 

  • Ruelle D (1989) Chaotic evolution and strange attractors. Cambridge University Press, New York

    Book  Google Scholar 

  • Russell DA, Hanson JD, Ott E (1980) Dimension of strange attractors. Phys Rev Lett 45:1175–1178

    Article  Google Scholar 

  • Sangoyomi TB, Lall U, Abarbanel HDI (1996) Nonlinear dynamics of the Great Salt Lake: dimension estimation. Water Resour Res 32(1):149–159

    Article  Google Scholar 

  • Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett 55:1082–1085

    Article  Google Scholar 

  • Sauer T, Yorke J, Casdagli M (1991) Embeddology. J Stat Phys 65:579–616

    Article  Google Scholar 

  • Schreiber T (1995) Efficient neighbor searching in nonlinear time series analysis. Int J Bifurcat Chaos 5:349–358

    Article  Google Scholar 

  • Schreiber T (1998) Constrained randomization of time series data. Phys Rev Lett 80(10):2105–2108

    Article  Google Scholar 

  • Schreiber T, Kantz H (1996) Observing and predicting chaotic signals: is 2% noise too much? In: Kadtke JB (ed) Kravtsov YuA. Predictability of complex dynamical systems, Springer Series in Synergetics, Springer, Berlin, pp 43–65

    Google Scholar 

  • Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77(4):635–638

    Article  Google Scholar 

  • Schreiber T, Schmitz A (1997) Discrimination power of measures for nonlinearity in a time series. Phys Rev E 55(5):5443–5447

    Article  Google Scholar 

  • Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142(3–4):346–382

    Article  Google Scholar 

  • Schürmann T, Grassberger P (1996) Entropy estimation of symbol sequences. Chaos 6:414–427

    Article  Google Scholar 

  • Shaw RS (1981) Strange attractors, chaotic behavior, and information flow. Z Natürforsch A 36:80–112

    Google Scholar 

  • Sivakumar B (2000) Chaos theory in hydrology: important issues and interpretations. J Hydrol 227(1–4):1–20

    Article  Google Scholar 

  • Sivakumar B (2001) Rainfall dynamics at different temporal scales: a chaotic perspective. Hydrol Earth Syst Sci 5(4):645–651

    Article  Google Scholar 

  • Sivakumar B (2005) Correlation dimension estimation of hydrologic series and data size requirement: myth and reality. Hydrol Sci J 50(4):591–604

    Article  Google Scholar 

  • Sivakumar B, Phoon KK, Liong SY, Liaw CY (1999) A systematic approach to noise reduction in chaotic hydrological time series. J Hydrol 219(3–4):103–135

    Article  Google Scholar 

  • Sivakumar B, Berndtsson R, Olsson J, Jinno K (2002a) Reply to ‘which chaos in the rainfall-runoff process?’ by Schertzer et al. Hydrol Sci J 47(1):149–158

    Google Scholar 

  • Sivakumar B, Persson M, Berndtsson R, Uvo CB (2002b) Is correlation dimension a reliable indicator of low-dimensional chaos in short hydrological time series? Water Resour Res 38(2). doi:10.1029/2001WR000333

  • Sivakumar B, Jayawardena AW, Li WK (2007) Hydrologic complexity and classification: a simple 1433 data reconstruction approach. Hydrol Process 21(20):2713–2728

    Google Scholar 

  • Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734–741

    Article  Google Scholar 

  • Suzuki T, Ikeguchi T, Suzuki M (2007) Algorithms for generating surrogate data for sparsely quantized time series. Physica D 231(2):108–115

    Article  Google Scholar 

  • Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, vol 898., Lecture Notes in MathematicsSpringer-Verlag, Berlin, Germany, pp 366–381

    Google Scholar 

  • Theiler J (1987) Efficient algorithm for estimating the correlation dimension from a set of discrete points. Phys Rev A 36:4456–4462

    Article  Google Scholar 

  • Theiler J (1990) Estimating fractal dimension. J Opt Soc Am A: 7:1055–1073

    Article  Google Scholar 

  • Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94

    Article  Google Scholar 

  • Timmer J (1998) Power of surrogate data testing with respect to nonstationarity. Phys Rev E 58(4):5153–5156

    Article  Google Scholar 

  • Toledo E, Toledo S, Almog Y, Akselrod S (1997) A vectorized algorithm for correlation dimension estimation. Phys Lett A 229(6):375–378

    Article  Google Scholar 

  • Tsonis AA (1992) Chaos: from theory to applications. Plenum Press, New York

    Book  Google Scholar 

  • Tsonis AA, Elsner JB (1992) Nonlinear prediction as a way of distinguishing chaos from random fractal sequences. Nature 358:217–220

    Article  Google Scholar 

  • Tsonis AA, Elsner JB, Georgakakos KP (1993) Estimating the dimension of weather and climate attractors: important issues about the procedure and interpretation. J Atmos Sci 50:2549–2555

    Article  Google Scholar 

  • Tsonis AA, Triantafyllou GN, Elsner JB, Holdzkom JJ II, Kirwan AD Jr (1994) An investigation on the ability of nonlinear methods toinfer dynamics from observables. Bull Amer Meteor Soc 75:1623–1633

    Article  Google Scholar 

  • Vastano JA, Kostelich EJ (1986) Comparison of algorithms for determining Lyapunov exponents from experimental data. In: Mayer-Kress G (ed) Dimenions and entropies in chaotic systems. Springer-Verlag, Berlin

    Google Scholar 

  • Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58:95–126

    Article  Google Scholar 

  • Whitney H (1936) Differentiable manifolds. Ann Math 37:645–680

    Article  Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Vastano A (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317

    Article  Google Scholar 

  • Young LS (1982) Dimension, entropy, and Lyapunov exponents. Ergodic Theory Dyn Syst 2:109–124

    Article  Google Scholar 

  • Young LS (1984) Dimension, entropy, and Lyapunov exponents in differentiable dynamical systems. Phys A 124:639–645

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sivakumar, B. (2017). Chaos Identification and Prediction Methods. In: Chaos in Hydrology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2552-4_6

Download citation

Publish with us

Policies and ethics