Skip to main content

Tissue Tests

  • Chapter
  • First Online:

Abstract

Tissue tests are widely used in horticulture practice and have in comparison with soil or substrate testing advantages as well disadvantages in comparison with soil testing. One of the main advantages of tissue tests is the certainty that analysed nutrients in plant tissues are really present in the tissue analysed, while analytical data of soil and substrate testing only estimate the availability of nutrients to plants. There is no guarantee that nutrients determined in the root environment as available quantities will be absorbed by plants. Numerous factors can hinder or stimulate the uptake by plants of nutrients determined with soil and substrate testing as being sufficiently available for that. The best known example of such a hindrance or stimulation is the root zone temperature. Low root zone temperature generally reduces shoot tissue concentrations, whereby Ca, P and Mg are mostly more affected than N and K. But shoot tissue concentrations also can be negatively affected by evidently too high root zone temperatures. The effects differ for crops and growing conditions (Daskalaki and Burrage, 1998; Ikeda and Osawa, 1984; Moustafa and Morgan, 1984). Huge effects on nutrient concentrations in plant tissues occur, when crops are grown at root temperature far below the optimum for crop development (Ali et al., 1994). Another example of a factor that can affect the uptake of some minerals is the use of root stocks. The effect of grafting apparently differs for crops and probably rootstocks. Baas (1998) found for rose a stimulation of the uptake of B by grafting, while Edelstein et al. (2005) reported for melons a reduced B uptake for grafted plants when compared with non grafted. The effects also differ for elements. Cabrera (2002) using the same rootstock “Natal Briar” with roses like Baas (1998) found besides a higher uptake of B also higher uptakes of Cl, Na and Mg, while P, K and Fe were significantly decreased by grafting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams P 1990. Effect of salinity on the distribution of calcium in tomato (Lycopersicon esculentum) fruit and leaves. In: Van Beusichem M L (ed) Plant Nutrition – Physiology and Application. Kluwer Academic Publishers, Dordrecht, 473–476.

    Google Scholar 

  • Adams P and Ho 1990. Effect of salinity on calcium transport in tomato (Lycopersicon esculentum). In: Van Beusichem M L (ed) Plant Nutrition – Physiology and Application. Kluwer Academic Publishers, Dordrecht, 469–472.

    Google Scholar 

  • Ali I A Kafkafi U Sugimoto Y and Inanaga S 1994. Response of sand-grown tomato supplied with varying ratios of nitrate/ammonium to constant and variable root temperatures. J. Plant Nutr. 17, 2001–2004.

    Article  CAS  Google Scholar 

  • Baas R 1998. Wat doet calcium met de kwaliteit van rozen? Vakblad voor de Bloemisterij 53(5), 44–45.

    Google Scholar 

  • Bakker J C and Sonneveld C 1988. Calcium deficiency of glasshouse cucumber as affected by environmental humidity and mineral nutrition. J. Hort. Sci. 63, 241–246.

    CAS  Google Scholar 

  • Bakker J C 1990. Effect of day and night humidity on yield and fruit quality of glasshouse tomatoes (Lycopersicon esculentum Mill.). J. Hort. Sci. 65, 323–331.

    Google Scholar 

  • Benton Jones J 1970. Distribution of fifteen elements in corn leaves. Commun. Soil Sci. Plant Anal. 1, 27–33.

    Article  Google Scholar 

  • Bert J S and Honma S 1975. Effect of soil moisture and irrigation method on tipburn and edgburn severity in greenhouse soils. J. Amer. Soc. Hort. Sci. 100, 278–282.

    CAS  Google Scholar 

  • Bloemhard C 1995. Boriumgehalten in het gewas bij paprika. Proefstation voor Bloemisterij en Glasgroente, Naaldwijk, The Netherlands. Proefverslag nr 14, 12pp.

    Google Scholar 

  • Bradfield E G and Guttridge C G 1980. Night-time salt concentration and calcium transport in tomato fruits. In: Long Ashton Res. Sta. Report 1980, 61.

    Google Scholar 

  • Bradfield E G and Guttridge C G 1982. Uptake and movement of calcium in plants. In: Long Ashton Res. Sta. Report 1982, 136–137.

    Google Scholar 

  • Cabrera R 2002. Rose yield, dry matter partitioning and nutrient status response to rootstock selection. Sci. Hort. 95, 75–83.

    Article  CAS  Google Scholar 

  • Cassidy N G 1970. The distribution of potassium in plants. Plant Soil 32, 263–267.

    Article  CAS  Google Scholar 

  • CEN 2001a. EN 13650. Soil improvers and growing media – extraction of aqua regia soluble elements, 17pp.

    Google Scholar 

  • CEN 2001b. EN 13654-1 Soil improvers and growing media – determination of nitrogen-Part 1: Modified Kjeldahl method, 10pp.

    Google Scholar 

  • CEN 2001c. EN 13654-2 Soil improvers and growing media – determination of nitrogen-Part 2: Dumas method, 8pp.

    Google Scholar 

  • Chapman H D 1966. Diagnostic Criteria for Plants and Soils. University California, Division Agriculture Sciences, Berkeley, CA, 793pp.

    Google Scholar 

  • Charbonneau J Gosselin A and Trudel M J 1988. Influence de la conductivité électrique de la solution nutritive sur la croissance et le développement de la tomate de serre cultivée avec ou sans éclairage d’appoint. Can. J. Plant Sci. 68, 267–276.

    Article  Google Scholar 

  • Daskalaki A and Burrage S W 1998. Solution temperature and the uptake of water and nutrients by cucumber (Cucumus sativus L.) in hydroponics. Acta Hort. 458, 317–322.

    Google Scholar 

  • DeKock P C Hall A and Inkson R H E 1979. Active iron in plant leaves. Ann. Bot. 43 737–740.

    CAS  Google Scholar 

  • De Kreij C Sonneveld C Warmenhoven M G and Straver N A 1992. Guide values for nutrient element contents of vegetables and flowers under glass (third edition). Proefstation voor Tuinbouw onder Glas te Naaldwijk, The Netherlands, Series: Voedingsoplossingen voor Glastuinbouw no 15, 69pp.

    Google Scholar 

  • De Kreij, 1993. Plantevoeding, gebrek- en overmaatverschijnselen. In: Proefstation voor Tuinbouw onder Glas te Naaldwijk, The Netherlands, Informatiereeks No 87, Plantenvoeding in de Glastuinbouw (third edition), 75–79.

    Google Scholar 

  • Edelstein M Ben-Hur M Cohen R Burger Y and Ravina I 2005. Boron and salinity effects on grafted and non grafted melon plants. Plant Soil 269, 273–284.

    Article  CAS  Google Scholar 

  • Emmert E M 1930. A method for the rapid determination of phosphate in fresh plant tissue. Plant Physiol. 5, 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Foy C D Scott B J and Fisher J A 1988. Genetic differences in plant tolerance to manganese toxicity. In: Graham R D et al. (eds), Manganese in Soils and Plants, Kluwer Academic Press, Dordrecht, 293–307.

    Google Scholar 

  • Horst W J et al., 1983. Factors responsible for genotipic manganese tolerance in cowpea. Plant Soil 72, 213–218.

    Article  CAS  Google Scholar 

  • Ikeda H and Osawa T 1984. lettuce growth as influenced by N source and temperature of the nutrient solution. Sixth Intern. Congr. Soilless Culture Lunteren 1984 Proc., 273–284.

    Google Scholar 

  • Katyal J C and Sharma B D 1980. A new technique of plant analysis to resolve iron chlorosis. Plant Soil 55, 105–119.

    Article  CAS  Google Scholar 

  • Kohl H C and Oertli J J 1961. Distribution of boron in leaves. Plant Physiol. 36, 420–424.

    Article  PubMed  CAS  Google Scholar 

  • Lang H J and Reed D W 1987. Comparison of HCl extraction versus total iron analysis for iron tissue analysis. J. Plant Nutr. 10, 795–804.

    Article  CAS  Google Scholar 

  • Manzanares M Lucena J J and Garate A 1990. Iron II determination in leaves of strawberry (Fragaria vesca). In: Van Beusichem M L (ed) Plant Nutrition – Physiology and Applications. Kluwer Academic Publishers, Dordrecht, 805–808.

    Google Scholar 

  • Marschner H 1997. Mineral Nutrition of Higher Plants. Academic press, London.

    Google Scholar 

  • Millikan C R Bjarnason E N Osborn R K and Hanger B C 1971. Calcium concentration in tomato fruits in relation to the incidence of blossom-end rot. Austr. J. Exp. Agric. Anim. Husb. 11, 570–575.

    Article  CAS  Google Scholar 

  • Moustafa A T and Morgan J V 1984. The effect of root zone warming and air temperature on dry matter accumulation, nutrient uptake and nutrient composition of spray chrysanthemum in NFT. Sixth Intern. Congr. Soilless Culture Lunteren 1984 Proc., 401–419.

    Google Scholar 

  • Plaut Z Grave A Yehezkel Ch and Matan E 2005. Osmotic adjustment of tomato fruits and leaves grown in sand and irrigated with saline water. Acta Hort. 697, 285–291.

    CAS  Google Scholar 

  • Roorda van Eysinga J P N L and Smilde K W 1980. Voedingsziekten bij chrysant. Proefstation voor Tuinbouw onder Glas, Naaldwijk, The Netherlands, 42pp.

    Google Scholar 

  • Roorda van Eysinga J P N L and Smilde K W 1981. Nutritional Disorders in Glasshouse Tomatoes, Cucumbers and Lettuce. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands, 130pp.

    Google Scholar 

  • Savvas D Ntasi G and Passam H C 2008. Plant nutrition and physiological disorders in greenhouse grown tomato, sweet pepper and eggplant. Europ. J. Sci. Biotechn. Vol 2, 45–61.

    Google Scholar 

  • Scaife M A and Bray B G 1977. Quick sap tests for improved control of crop nutrient status. ADAS Q. Rev. 27, 137–145.

    Google Scholar 

  • Sonneveld C and Koningen A 1973. Mangaanvergiftiging bij roos. Vakblad Bloemisterij 28(30), 11.

    Google Scholar 

  • Sonneveld C and Voogt S J 1975. Studies on the manganese uptake of lettuce on steam-sterilised glasshouse soil. Plant Soil 42, 49–64.

    Article  CAS  Google Scholar 

  • Sonneveld C 1978. Normen voor het zoutgehalte van gietwater. In: Waterbehandeling en Waterkwaliteit voor de Glastuinbouw. Proefstation voor de Groenten en Fruitteelt onder Glas, Naaldwijk, The Netherlands. Informatiereeks no 50, 2–5.

    Google Scholar 

  • Sonneveld C 1980. Gewasonderzoek op basis van plantesap. Practijkonderzoek 1979. Proefstation voor Tuinbouw onder Glas te Naaldwijk. Intern verslag no 18, 37pp.

    Google Scholar 

  • Sonneveld C and Van Dijk P A 1982. The effectiveness of some washing procedures on the removal of contaminants from plant tissue samples of glasshouse crops. Commun. Soil Sci. Plant Anal. 13, 487–496.

    Article  Google Scholar 

  • Sonneveld C and De Bes S S 1983. Relationship between analytical data of plant sap and dried material of glasshouse crops. Commun. Soil Sci. Plant Anal. 14, 75–87.

    Article  CAS  Google Scholar 

  • Sonneveld C 1984. Effecten van verschillende kationen verhoudingen bij vleestomaten geteeld in voedingsfilm. Proefstation voor Tuinbouw onder Glas te Naaldwijk, Intern verslag no 58, 9pp.

    Google Scholar 

  • Sonneveld C De Bes S S and Voogt W 1986. Zinc uptake and distribution in tomatoes grown in rockwool. Soilless Cult. 2(2), 49–60.

    Google Scholar 

  • Sonneveld C and Voogt W 1986. Supply and uptake of potassium, calcium and magnesium of spray carnations (Dianthus caryophyllus) grown in rockwool. Plant Soil 93, 259–268.

    Article  CAS  Google Scholar 

  • Sonneveld C and De Bes S S 1988. Interpretation of analytical data of tissue tests. Acta Hort. 222, 147–153.

    Google Scholar 

  • Sonneveld C and Voogt W 1990. Response of tomatoes (Lycopersicon esculentum) to an unequal distribution of nutrients in the root environment. Plant Soil 124, 251–256.

    Article  CAS  Google Scholar 

  • Sonneveld C 1991. Borium in wortelmilieu en plant. Proefstation voor Tuinbouw onder Glas, Intern verslag nr 19, 18pp.

    Google Scholar 

  • Sonneveld C and Voogt W 1991. Effects of Ca-stress on blossom-end rot and Mg-deficiency in rockwool grown tomato. Acta Hort. 294, 81–88.

    Google Scholar 

  • Sonneveld C 1993. Gewasonderzoek. In: Proefstation voor Tuinbouw onder Glas te Naaldwijk, The Netherlands, Informatiereeks No 87, Plantenvoeding in de Glastuinbouw (third edition), 62–68.

    Google Scholar 

  • Sonneveld C 2000. Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. Thesis Wageningen University, Netherlands, 151pp.

    Google Scholar 

  • Sonneveld C and Voogt W 2001. Chemical analysis in substrate systems and hydroponics – use and interpretation. Acta Hort. 548, 247–259.

    CAS  Google Scholar 

  • Sonneveld C and Welles G W H 2005. Cation concentrations of plant tissues of fruit-vegetable crops as affected by the EC of the external nutrient solution and by humidity. Acta Hort. 697, 377–386.

    CAS  Google Scholar 

  • Sonneveld C and Voogt W 2008. Nutrient concentrations of plant tissues of greenhouse crops as affected by the EC of the external solution. Acta Hort. 779, 313–320.

    CAS  Google Scholar 

  • Sugiyama N Shidachi K and Okada K 1985. Evaluation of critical K concentration expressed on tissue water basis in spinach. J. Jpn. Soc. Hort. Sci. 54, 336–343.

    Article  Google Scholar 

  • Van den Bos A L 1994. EC in relatie tot het type substraat bij koolrabi in een gesloten teeltsysteem. Proefstation voor Tuinbouw onder Glas, Intern Verslag, 27, 13pp.

    Google Scholar 

  • Van den Bos A L 1996. EC in relatie tot het type substraat bij amaryllis in een gesloten teeltsysteem. Proefstation voor Bloemisterij en Glasgroente, Rapport 55, 30pp.

    Google Scholar 

  • Van den Bos A L 1997. EC in relatie tot het type substraat bij lelie in een gesloten teeltsysteem. Proefstation voor Bloemisterij en Glasgroente, Rapport 81, 34pp.

    Google Scholar 

  • Voogt W and Sonneveld C 2009. The effects of Fe-chelate type and pH on substrate grown roses. Acta Hort. 819, 411–417.

    Google Scholar 

  • Winsor W and Adams P 1987. Diagnosis of Mineral Disorders in Plants. Vol 3 Glasshouse Crops. Her Majesty’s Stationary Office, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sonneveld, C., Voogt, W. (2009). Tissue Tests. In: Plant Nutrition of Greenhouse Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2532-6_5

Download citation

Publish with us

Policies and ethics