Skip to main content

Soil and Substrate Testing to Estimate Nutrient Availability and Salinity Status

  • Chapter
  • First Online:
Plant Nutrition of Greenhouse Crops

Abstract

In the greenhouse industry methods have been developed for the determination of the nutrient availability and salinity status of soils and substrates. As in other agriculture branches, soil testing has the aim to estimate the availability, including the solubility as well the quantity, of plant nutrients to enable the farmer to get maximum production with minimum fertilizer use. The success of the farmer thereby does not depend only on the precision of the method, but also on the knowledge of the requirements of the crop. Both the utility of the soil testing method and the fertilizer application in relation to the results to get maximum yield will be calibrated in fertilizer experiments. Until lately, farmers based their decision about the amount of fertilizer addition on the costs of the fertilizer and the profits of the expected yield increase. However, in recent years farmers also have to consider the environmental aspects in their decisions. Fertilizer applications should be focussed also on their effects to pollution of soil, water and air. Beside the availability of nutrients, the determinations of characteristics for the salinity status are important and interact with the fertilization programme considered. The definitions given so far are operative for greenhouse crops as well as for crops grown in the field. However, soil testing for greenhouse industry has some specific aspects which will be mentioned beforehand, because they are important in relation to the methods used. The aspects in view for greenhouses are following.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt D and Peters I 1992. Die CaCl2/DTPA-Methode zur Untersuchung Gärtnerischer Erden auf Mengen- und Spurenelemente. Agribiol. Res. 45, 204–214.

    Google Scholar 

  • Carpena O Guillén M G Fernandez F G and Caro M 1968. Saline soil classification using the 1:5 aqueous extract. 9th International Congress of Soil Science, Transactions vol. 1, 483–490.

    CAS  Google Scholar 

  • CEN 1999a. European Committee for Standardisation CEN/TC 223. Soil improvers and growing media – Sampling. EN 12579, 11 pp.

    Google Scholar 

  • CEN 1999b. European Committee for Standardisation CEN/TC 223. Soil improvers and growing media – Determination of pH. EN 13037, 9 pp.

    Google Scholar 

  • CEN 2001a. European Committee for Standardisation CEN/TC 223. Soil improvers and growing media – Extraction of water soluble nutrients. EN 13652, 15 pp.

    Google Scholar 

  • CEN 2001b. European Committee for Standardisation CEN/TC 223. Soil improvers and growing media – Extraction of calcium chloride/DTPA (CAT) soluble nutrients. EN 13651, 16 pp.

    Google Scholar 

  • CEN 2007. European Committee for Standardisation CEN/TC 223. Soil improvers and growing media – Sample preparation for chemical and physical tests, determination of dry matter content, moisture content and laboratory compacted bulk density. EN 13040, 17 pp.

    Google Scholar 

  • Cline M G 1944. Principles of soil testing. Soil Sci. 58, 275–288.

    Article  CAS  Google Scholar 

  • De Kreij C Van den Bos A L and Baas R 1999. Bemestingsadviesbasis substraten. Proefstation voor Bloemisterij en Glasgroente, Naaldwijk, The Netherlands, 145 pp.

    Google Scholar 

  • De Kreij C Kavvadias V Assimakopoulou A Paschalidis Chr Paraskevopoulos A Genneadopoulou A and Lagopoulos D 2005. Fertigation: I. Methodology of the 1:2 volume water extract. Proc. Management, use and protection of soil resources, Sofia 15–19 May 2005, 144–147.

    Google Scholar 

  • De Kreij C and Wever G 2005. Proficiency testing of growing media, soil improvers, soils and nutrient solutions. Comm. Soil Sci. Plant Anal. 36, 81–86.

    Article  Google Scholar 

  • De Vries O and Dechering F J A 1960. Grondonderzoek. Bedrijfslaboratorium voor Grond- en Gewasonderzoek, Oosterbeek, The Netherlands.

    Google Scholar 

  • Fischer P 1992. Wie wirkt Gips auf Topfpflanzen? Deutscher Gartenbau 34, 2004–2005.

    Google Scholar 

  • Fried M and Broeshart H 1967. The Soil-Plant System in Relation to Inorganic Nutrition. Academic Press, New York.

    Google Scholar 

  • Fujimoto C K and Sherman G D 1948. Behavior of manganese in the soil and the manganese cycle. Soil Sci. 66, 131–145.

    Article  CAS  Google Scholar 

  • ISO 1994. ISO 5725-2 Accuracy (trueness and precision) of measurement methods and results-part 2. Basic method for the determination of repeatability and reproducibility of a standard measurement method. 42 pp.

    Google Scholar 

  • Kipp J A Wever G and De Kreij C 2000. International Substrate Manual – Analysis Characteristics Recommendations. Elsevier International, Doetinchem, The Netherlands, 94 pp.

    Google Scholar 

  • KIWA 2003. Appendices on analytical methods. BRL-K10001, Substrate materials for the product certificate for growing media, 62 pp.

    Google Scholar 

  • Knudsen D Peterson G A and Pratt P F 1982. Lithium, sodium and potassium. In: Page A.L. (ed). Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, second edition. Agronomy Series Number 9 Part 2. American Society of Agronomy, Inc., Soil Sci. Soc. of America, Madison, WI.

    Google Scholar 

  • Leeper G W 1947. The forms and reactions of manganese in the soil. Soil Sci. 63, 79–94.

    Article  CAS  Google Scholar 

  • Maas E V and Hoffman G J 1977. Crop salt tolerance – current assessment. J. Irr. Drainage Div. 103 IR2, 115–134.

    Google Scholar 

  • Massey D M and Winsor G W 1968. Soil salinity studies. II: The relation of plant growth to salinity in soil and soil mixtures of differing physical properties. J. Sci. Fd Agric. 19, 332–338.

    Google Scholar 

  • Mengel K and Kerkby E A 1987. Principles of Plant Nutrition, 4th edition. International Potash Institute, Bern. Special attention to Chapter 9, 403–426.

  • Moss P 1963. Some aspects of the cation status of soil moisture. Part I: The ratio law and soil moisture content. Plant Soil 18, 99–113.

    Article  CAS  Google Scholar 

  • Otten W 1994. Dynamics of water and nutrients for potted plants induced by flooded bench irrigation: Experiments and simulation. Thesis, Wageningen Agriculture University, The Netherlands, 115 pp.

    Google Scholar 

  • Peck T R and Melsted S W 1980. Field sampling for soil testing. In: Walsh L N and Beaton J D (eds) Soil testing and plant analysis. Soil Sci. Soc. Amer., Madison Wisc., 67–75.

    Google Scholar 

  • Reitemeier R F 1946. Effect of moisture content on the dissolved end exchangeable ions of soils of arid regions. Soil Sci. 61, 195–214.

    Article  CAS  Google Scholar 

  • Richards L A (ed) 1954. Diagnosis and improvement of saline and alkaline soils. USDA Agric. Handbook, no. 60 United States Department Agriculture, US Government Printing Office, Washington DC, 160pp.

    Google Scholar 

  • Shen J and Hoffland E 2007. In situ sampling of small volumes of soil solution using modified micro-suction cups. Plant Soil 292, 161–169.

    Article  CAS  Google Scholar 

  • Sonneveld C Van den Ende J and Van Dijk P A 1974. Analysis of growing media by means of 1:1½ volume extract. Commun. Soil Sci. Plant Anal. 5, 183–202.

    Article  CAS  Google Scholar 

  • Sonneveld C 1979. The accuracy of analytical data of glasshouse soil testing. Neth J. Agric. Sci. 27, 297–304.

    CAS  Google Scholar 

  • Sonneveld C and De Bes S 1986. Grondonderzoek op basis van waterige extractie. Deel 2. Enkelvoudige lineaire correlaties. Proefstation voor de Tuinbouw onder Glas te Naaldwijk, Intern Verslag nr 31, 18 pp.

    Google Scholar 

  • Sonneveld C and Voorthuizen E 1988. Monsterfout en analysefout bij het chemisch onderzoek van voedingsoplossingen in steenwolmatten. Proefstation voor Tuinbouw onder glas, Naaldwijk, The Netherlands. Intern verslag, nr 10, 13 pp.

    Google Scholar 

  • Sonneveld C 1990. Estimating quantities of water-soluble nutrients in soil using a specific 1:2 volume extract. Commun. Soil Sci. Plant Anal. 21, 1257–1265.

    Article  CAS  Google Scholar 

  • Sonneveld C Van den Ende J and De Bes S S 1990. Estimating the chemical composition of soil solutions by obtaining saturation extracts or specific 1:2 by volume extracts. Plant Soil 122, 169–175.

    Article  CAS  Google Scholar 

  • Sonneveld C and Voogt W 1990. Response of tomatoes (Lycopersicon esculentum) to an unequal distribution of nutrients in the root environment. Plant Soil 124, 251–256.

    Article  CAS  Google Scholar 

  • Sonneveld C Van den Bos A L Van der Burg A M M and Voogt W 1991. Fertigation in the greenhouse industry in The Netherlands. In: Fertigation /Chemigation, FAO, Rome, 186–193.

    Google Scholar 

  • Sonneveld C and Van Elderen C W 1994. Chemical analysis of peaty growing media by means of water extraction. Comm. Soil Sci. Plant Anal. 25, 3199–3208.

    Article  CAS  Google Scholar 

  • Sonneveld C 1995. Fertigation in the greenhouse industry. In: Proc. of the Dahlia Greidinger Intern. Symposium on Fertigation. Technion – Israel Institute of Technology, Haifa, 25 March–1 April, 121–140.

    Google Scholar 

  • Sonneveld C and De Kreij C 1995. Standardisation of chemical analysis of growing media. Acta Hort. 401, 569–574.

    CAS  Google Scholar 

  • Sonneveld C and De Kreij C 1999. Response of cucumber (Cucumis sativis L.) to an unequal distribution of salts in the root environment. Plant Soil 209, 47–56.

    Article  CAS  Google Scholar 

  • Sonneveld C and Voogt W 2001. Chemical analysis in substrate systems and hydroponics – use and interpretation. Acta Hort. 548, 247–259.

    CAS  Google Scholar 

  • Sonneveld C and Voogt W 2009. Determination of micro nutrients by water extraction and interpretation of the analytical data. Acta Hort. 819, 89–98.

    Google Scholar 

  • Van den Bos A L De Kreij C and Voogt W 1999.Bemestingsadviesbasis Grond. Proefstation voor Bloemisterij en Glasgroente, Naaldwijk, The Netherlands, 54 pp.

    Google Scholar 

  • Van den Ende J and Knoppert J 1959. Grondonderzoek ten behoeve van het bijmesten. Groenten en Fruit 14, 769.

    Google Scholar 

  • Van den Ende J 1968. Analysis of greenhouse soils by means of aqueous extracts. Proc. 6th Coll. Intern. Potash Inst. Florence/Italy, 246–255.

    Google Scholar 

  • Van den Ende J 1988a. Water contents of glasshouse soils at field capacity and at saturation. 1. Relationships between water contents. Neth. J. Agric. Sci. 36, 265–274.

    Google Scholar 

  • Van den Ende J 1988b. Water contents of glasshouse soils at field capacity and at saturation. 2. Estimating water contents from organic matter and clay contents or from loss-on-ignition. Neth. J. Agric. Sci. 36, 275–282.

    Google Scholar 

  • Van den Ende J 1989a. Estimating the chemical composition of the soil solution of glasshouse soils. 1. Composition of soil solution and aqueous extracts. Neth. J. Agric. Sci. 37, 311–322.

    Google Scholar 

  • Van den Ende J 1989b. Estimating the chemical composition of the soil solution of glasshouse soils. 2. Relationships between the compositions of soil solution and aqueous extracts. Neth. J. Agric. Sci. 37, 323–334.

    Google Scholar 

  • Van der Wees A 1983. Bemonstering en bemesting van grond. Groenten en Fruit, 38(26), 28–29.

    Google Scholar 

  • Van der Wees A 1993. Bemonstering van grond en substraat. In: Plantevoeding in de Glastuinbouw. Proefstation voor Tuinbouw onder Glas te Naaldwijk. Infromatiereeks no 87, 40–43.

    Google Scholar 

  • Verloo M G 1980. Peat as a natural complexing agent for trace elements. Acta Hort. 99, 51–56.

    Google Scholar 

  • Vermeulen F H B 1960. Fehlerquellen bei der Bodenuntersuch. Stand und Leistung agrikulturchemischer und agrarbiologischen Forschung. VII, 80–85.

    Google Scholar 

  • Winsor G W Davies J N and Massey D M 1963. Soil salinity studies. I Effect of calcium sulphate on the correlation between plant growth and electrical conductivity of soil extracts. J. Sci. Fd. Agric. Sci. 14, 42–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sonneveld, C., Voogt, W. (2009). Soil and Substrate Testing to Estimate Nutrient Availability and Salinity Status. In: Plant Nutrition of Greenhouse Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2532-6_4

Download citation

Publish with us

Policies and ethics