Skip to main content

Soil Solution

  • Chapter
  • First Online:
Plant Nutrition of Greenhouse Crops
  • 4151 Accesses

Abstract

The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil solution with respect to plant development. One of the most striking differences between growing in the greenhouse and in the field is the exclusion of the natural precipitation in greenhouses, which offers opportunities for a full control of the water supply. Another difference is the heavy fertilizer application, related to the high nutrient uptake. In addition these application fertilizers are for the greater part added by fertigation. Furthermore, the irrigation and fertilizer addition not only has a function with respect to supply the plant with sufficient nutrients and water, but in greenhouses these actions are also a tool to control plant growth and produce quality. Sometimes, low osmotic potentials in the soil solution are maintained to prevent a lush growth or to improve fruit quality. Such effects on plant development, especially makes sense in substrate growing, where plants are grown in small rooting volumes and thus the composition of the soil (substrate) solution easily can be adjusted, for example on the demand of the crop under changing growing conditions. Thus, in principle it seems possible to supply plants under greenhouse conditions at the right time with the right quantity of water and nutrients, and losses of water and nutrients to the environment can be minimized. However, this is often frustrated by a heterogeneous water supply of irrigation systems, a heterogeneous water uptake by plants and accumulation of salts in the root environment from the irrigation water used. Thus, a precise matching on the demand by the water supply is hindered by an overdose of irrigation water to equalize the differences between wet and dry spots and to prevent too high accumulations of residual salts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams F 1974. Soil solution. In: Carson E W (ed) The Plant Root and Its Environment. University press of Virginia, Charlottesville, VA, 441–481.

    Google Scholar 

  • Barraclough P B 1989. Root growth, macro nutrient uptake dynamics and soil fertility requirements of a high yielding winter oil seed crop. Plant Soil 119, 59–70.

    Article  CAS  Google Scholar 

  • Campbell R B Bower C A and Richards L A 1948. Change of electrical conductivity with temperature and the relation of osmotic pressure to electrical conductivity and ion concentration for soil extracts. Soil Sci. Soc. Am. Proc. 12, 66–69.

    Article  Google Scholar 

  • CEN 2006. EN 13041 A1. Soil improvers and growing media – Determination of physical properties – Dry bulk density, air volume, water volume, shrinkage value and total pore space, 21pp.

    Google Scholar 

  • Kipp J A Wever G and De Kreij C 2000. International Substrate Manual – Analysis Characteristics Recommendations. Elsevier International Business information, Doetinchem, The Netherlands, 94pp.

    Google Scholar 

  • Maaswinkel R M H and Welles G W H 1986. Factors influencing glassiness in lettuce. Neth. J. Agric Sci. 34, 57–65.

    Google Scholar 

  • Marschner H Römheld V and Cakmak I 1987. Root-induced changes of nutrient availability in the rhizophere. J. Plant Nutr. 10, 1175–1184.

    Article  CAS  Google Scholar 

  • Marschner H 1997. Mineral Nutrition of Higher Plants, Second edition. Academic Press, London, 50–52.

    Google Scholar 

  • McNeal B L Oster J D and Hatcher J T 1979. Calculation of electrical conductivity from soil solution composition data as an aid to in-situ estimation of soil salinity. Soil Sci. 110, 405–414.

    Article  Google Scholar 

  • Peters M 1990. Nutzungseinfluss auf die Stoffdynamik schleswig-holsteinischer Boden – Wasser-, Luft-, Nähr- und Schadstoffdynamik –. Dissertation, Schriftenreihe Institut für Pflanzenernährung und Bodenkunde Universität Kiel, nr 8, 293pp.

    Google Scholar 

  • Riemens J M 1951. Verzouting en verdroging in het westen van Nederland, meer in het bijzonder in het Westland. Maandblad Landbouwvoorlichtingsdienst 1951, 56–59.

    Google Scholar 

  • Qian P and Wolt D J 1990. Effects of drying and time of incubation on the composition of displaced solution. Soil Sci. 149, 367–374.

    Article  Google Scholar 

  • Sonneveld C Koornneef P and Van den Ende J 1966. De osmotische druk en het electrische geleidingsvermogen van enkele zoutoplossingen. Meded. Dir. Tuinb. 29, 471–474.

    CAS  Google Scholar 

  • Sonneveld C and Van den Ende J 1967. De samenstelling van de zouten in het oppervlaktewater in het Zuidhollands glasdistrict. Meded. Dir. Tuinb. 30, 411–416.

    CAS  Google Scholar 

  • Sonneveld C Van den Ende J and Van Dijk P A 1974. Analysis of growing media by means of 1:1½ volume extract. Comm. Soil Sci. Plant Anal. 5, 183–202.

    Article  CAS  Google Scholar 

  • Sonneveld C and Van Beusekom J 1973.Specifieke ioneffecten bij tuinbouwgewassen (Teeltjaar 1972). Proefstation voor Groenten en Fruitteelt onder Glas te Naaldwijk, Intern rapport no 617, 23pp.

    Google Scholar 

  • Sonneveld C and Van den Ende J 1975. The effect of some salts on head weight and tipburn of lettuce and on fruit production and blossom-end rot of tomatoes. Neth. J. Agric. Sci. 23, 191–201.

    Google Scholar 

  • Sonneveld C 1980. Gewasonderzoek op basis van plantensap. Praktijkonderzoek 1979. Proefstation voor Tuinbouw onder Glas te Naaldwijk, Intern verslag 1980, no 18, 37pp.

    Google Scholar 

  • Sonneveld C 1981a. Items for application of macro-elements in soilless cultures. Acta Hort. 126, 187–195.

    Google Scholar 

  • Sonneveld C 1981b. Specifieke zouteffecten bij chrysant (teelt 1979–1980), Proefstation voor Tuinbouw onder Glas te Naaldwijk, Internverslag nr 8, 18pp.

    Google Scholar 

  • Sonneveld C and De Bes S S 1984. Micro nutrient uptake of glasshouse cucumbers grown on rockwool. Commun. Soil Sci. Plant Anal. 15, 519–535.

    Article  CAS  Google Scholar 

  • Sonneveld C and Voogt W 1985. Growth and cation absorption of some fruit-vegetable crops grown on rockwool as affected by different cation ratios in the nutrient solution. J. Plant Nutr. 8, 585–602.

    Article  CAS  Google Scholar 

  • Sonneveld C and De Bes S 1986. Grondonderzoek op basis van waterige extractie, Deel 2, Enkelvoudige lineaire correlaties. Proefstation voor Tuinbouw onder Glas. Intern rapport, no 31, 18pp.

    Google Scholar 

  • Sonneveld C and Voogt W 1986. Supply and uptake of potassium, calcium and magnesium of spray carnations (Dianthus caryophyllus) grown in rockwool. Plant Soil 93, 259–268.

    Article  CAS  Google Scholar 

  • Sonneveld C and Voorthuyzen E 1988. Monsterfout en analysefout bij het chemisch onderzoek van voedingsoplossingen in steenwolmatten. Proefstation voor Tuinbouw onder Glas. Intern rapport, no 10, 13pp.

    Google Scholar 

  • Sonneveld C 1990. Estimating quantities of water-soluble nutrients in soil using a specific 1:2 volume extract. Commun. Soil Sci. Plant Anal. 21, 1257–1265.

    Article  CAS  Google Scholar 

  • Sonneveld C Van den Ende J and De Bes S S 1990. Estimating the chemical composition of soil solutions by obtaining saturation extracts or specific 1:2 by volume extracts. Plant Soil 122, 169–175.

    Article  CAS  Google Scholar 

  • Sonneveld C and Voogt W 1990. Response of tomatoes (Lycopersicon esculentum) to an unequal distribution of nutrients in the root environment. Plant Soil 124, 251–256.

    Article  CAS  Google Scholar 

  • Sonneveld C 1991. Rockwool as a substrate for greenhouse crops. In: Bajaj Y P S (ed) Biotechnology in Agriculture and Forestry 17, High-Tech and Micropropagation I, Springer-Verlag, Berlin, 285–312.

    Google Scholar 

  • Sonneveld C and Van Elderen C W 1994. Chemical analysis of peaty growing media by means of water extraction. Commun. Soil Sci. Plant Anal. 25, 3199–3208.

    Article  CAS  Google Scholar 

  • Sonneveld C 1995. Fertigation in the greenhouse industry. In: Proc. of the Dahlia Greidinger Intern. Symposium on Fertigation. Technion – Israel Institute of Technology, Haifa, 25 March–1 April 1995, 121–140.

    Google Scholar 

  • Sonneveld C and Voogt W 1997. Effects of pH value and Mn application on yield and nutrient absorption with rockwool grown gerbera. Acta Hort. 450, 139–147.

    CAS  Google Scholar 

  • Sonneveld C Voogt W and Spaans L 1999. A universal algorithm for calculation of nutrient solutions. Acta Hort. 481, 331–339.

    CAS  Google Scholar 

  • Sonneveld C 2000. Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. Thesis Wageningen University, Netherlands, 151pp.

    Google Scholar 

  • Sonneveld C and Voogt W 2001. Chemical analysis in substrate systems and hydroponics – use and interpretation. Acta Hort. 548, 247–259.

    CAS  Google Scholar 

  • Van den Bos A L 1996. EC in relatie tot het type substraat bij de bollenteelt van Amaryllus in een gesloten systeem.Proefstation voor de Bloemisterij en Glasgroente Rapport no 55, 30pp.

    Google Scholar 

  • Van den Ende J 1952. De invloed van zout gietwater op de ontwikkeling van verschillende tuinbouwgewassen onder glas. Meded. Dir. Tuinbouw, 15, 884–903.

    Google Scholar 

  • Van den Ende J 1955.De watervoorziening van tomaten, Meded. Dir. Tuinbouw 18, 904–917.

    Google Scholar 

  • Van den Ende J 1968. Analysis of greenhouse soils by means of aqueous extracts. Proc. 6th Coll. Intern. Potash Inst. Florence, 246–255.

    Google Scholar 

  • Van den Ende J 1988a. Water contents of glasshouse soils at field capacity and at saturation. 1. Relationships between water contents. Neth. J. Agric. Sci. 36, 265–274.

    Google Scholar 

  • Van den Ende J 1988b. Water contents of glasshouse soils at field capacity and at saturation. 2. Estimating water contents from organic-matter and clay contents or loss-on-ignition. Neth. J. Agric. Sci. 36, 275–282.

    Google Scholar 

  • Van den Ende J 1989. Estimating the composition of the soil solution of glasshouse soil. 1. Composition of soil solution and aqueous extracts. Neth. J. Agric. Sci. 37, 311–322.

    Google Scholar 

  • Verloo M G 1980. Peat as a natural complexing agent for trace elements. Acta Hort. 99, 51–56.

    Google Scholar 

  • Voogt W 1988. The growth of beefsteak tomato as affected by K/Ca ratios in the nutrient solution. Acta Hort. 222, 155.

    Google Scholar 

  • Voogt W and Sonneveld C 1997. Nutrient management in closed growing systems for greenhouse production. In: Goto E et al. (eds), Plant Production in Closed Ecosystems, Kluwer Academic Publishers, Dordrecht, The Netherlands, 83–102.

    Google Scholar 

  • Voogt W 2002. Potassium management of vegetables under intensive growth conditions. In: Pasricha N S and Bansal S K (eds) Potassium for sustainable crop production. Proc. Intern. Symp. On role of potassium in nutrient management for sustainable crop production in India. Intern. Potash Inst. Bern, 347–362.

    Google Scholar 

  • Voogt W and Sonneveld C, 2009. The effects of Fe-chelate type and pH on substrate grown roses. Acta Hort. 819, 411–417.

    Google Scholar 

  • Wever G 1995. Physical analysis of peat and peat-based growing media. Acta Hort. 401, 561–567.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sonneveld, C., Voogt, W. (2009). Soil Solution. In: Plant Nutrition of Greenhouse Crops. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2532-6_3

Download citation

Publish with us

Policies and ethics