Skip to main content

Friction in Vacuum

  • Chapter
  • First Online:

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 91))

Abstract

According to the most famous publications [1–7] in the field of vacuum mechanics, the vacuum is considered as an aggressive medium, which increases friction forces and accelerates the wear of friction couples of vacuum mechanisms. For the illustration of this position the known [3, 5, 6, 8] data about friction coefficients in atmosphere and in vacuum for traditional materials are shown in Table 3.1.

We can see that the previous publications does not show the difference of friction coefficient values in the low, middle, high and ultrahigh vacuum.

As a matter of fact, both vacuum degree and temperature also as friction speed, contacting load, have a great influence on the behaviour of a friction coefficient. In this chapter it will be shown that the physical nature of the friction coefficient varies in vacuum.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kragelsky I.V., Dobychin M.N., Combalov V.S., Foundation of Friction and Wear Calculation, Machinostroenie, Moscow, 1977 526 pp. [in Russian].

    Google Scholar 

  2. Kragelsky I.V., Mikhin N.M., Theory of Friction and Wear, Nauka, Moscow, 1965, pp. 30–34 [in Russian].

    Google Scholar 

  3. Buckley D.H., Friction, Wear and Lubrication in Vacuum, NASA Lewis Reserch Center, 1971, Washington, 135 pp.

    Google Scholar 

  4. Kragelsky I.V., Lubarsky I.M., Gusliakov A.A. et al., Friction and Wear in Vacuum, Machinostroenie, Moscow, 1973, 215 pp. [in Russian].

    Google Scholar 

  5. Nusinov M.D., Vacuum simulation in the laboratory investigations of ball for the outer space use, in Abstracts 3rd Internat. Conf. on Space Techn., Rome, Italy, 1971.

    Google Scholar 

  6. Kragelsky I.V., Friction, Wear, and Lubrication, Vol. 1, Machinostroenie, Moscow, 1978, 400 pp.

    Google Scholar 

  7. Kragelsky I.V., Friction, Wear, and Lubrication, Vol. 2, Machinostroenie, Moscow 1979, 632 pp.

    Google Scholar 

  8. Deulin E.A., Mednikov S.I., Papko V.M., Design and Spatiality of Exploitation of the Vacuum Mechanisms, Mashinostroenie, Moscow, 1986, 80 pp. [in Russian].

    Google Scholar 

  9. Dushman S., Scientific Foundations of Vacuum Technique, John Wiley & Sons, London, 1962.

    Google Scholar 

  10. Deulin E.A., Concept of dry friction of smooth surfaces in UHV, in Proceedings 14th International Vacuum Congress (IVC-14), Birmingham, Abstract Book, 1998, p. 310.

    Google Scholar 

  11. Deulin E.A., Mechanics and Physics of Precise Vacuum Mechanisms, Vol. 1, Vladimir State University, Vladimir, 2001, 176 pp.

    Google Scholar 

  12. Vakilov A.N., Mamonova M.V., Prudnikov V.V., Physic of Solids 34(4), 1997, 964–967 [in Russian].

    Google Scholar 

  13. Griaznov B.T., Zinkin A.N., Prudnikov V.V., Stasenko V.T., Technological Methods of the Longevity Increasing Microcryogen Installation, Nauka, Novosibirsk, 1999, 272 pp.

    Google Scholar 

  14. Volchkevitch A.I., High Vacuum Adsorption Pumps, Mashinostroenie, Moscow, 1973, 158 pp.

    Google Scholar 

  15. Dubinin M.M., Modern theory of volume adsorption for adsorption of gases and vapors on carbon sorbents, J. Phys. Chem. XXXIX(6), 1965, 1305–1317 [in Russian].

    Google Scholar 

  16. Brunauer F., Emmett P.H., Teller E., J. Amer. Chem. Soc. 60, 1938, 309.

    Article  Google Scholar 

  17. Bingelli M., Mate C.M., Influence of water vapor on nanotribology studied by friction force microscopy, J. Vac. Sci. Technol. B 13(3), May/June, 1955, 1312–1315.

    Article  Google Scholar 

  18. Archard J.F., The temperature of rubbing surfaces, Wear 2, 1958/1959, 438–455.

    Article  Google Scholar 

  19. Furey M.J., Surface temperatures in sliding contact, ASLE Transactions 7, 1964, 133–146.

    Google Scholar 

  20. Dayson C., Surface temperatures at unlibricated sliding contacts, ASLE Transactions 10, 1967, 169–174.

    Google Scholar 

  21. Deulin E.A., Gatsenko A.A., Loginov B.A., Friction force of smooth surfaces of SiO2-SiO2 as a function of residual pressure, Surface Science 433-435, 1999, 288–292.

    Article  Google Scholar 

  22. . SMM-2000T, Users Manual, KPD Company Ltd., Moscow, 1997, 135 pp.

    Google Scholar 

  23. Miranda P.B., Shen L.X., Salmeron M., Phys.Rev.Lett. 81(26), 1998, 5876–5879.

    Article  Google Scholar 

  24. Vasiliev Y.N., et al., Friction and Wear 8(6), 1987, 1044–1051 [in Russian].

    Google Scholar 

  25. Buckley D.H., Jonson R.I., The influence of crystal structure and some property of hexagonal metals on friction and adhesion, Wear 11(6), 1968, 405–419.

    Article  Google Scholar 

  26. Spurr R.T., Newcomb T.P., The friction and wear of various materials sliding against surfaces of different types and degree of roughness, in Proceedings Conference on Lubrication and Wear, London, Inst. Mech. Engrs., 1957, pp. 66–67.

    Google Scholar 

  27. Ivanova V.S., Balankin A.S., Bunin I.J., Oksogoev, A.A., Synergetic and Fractals in Material Science, Nauka, Moscow, 1983, 383 pp. [in Russian].

    Google Scholar 

  28. Feder J., Fractal, Plenum Press, New York, 1998, 283 pp.

    Google Scholar 

  29. Deulin E.A., Exchange of gases at friction in vacuum, in Proceedings ECASIA-97, Goteborg, John Wiley & Sons, 1997, pp. 1143–1146.

    Google Scholar 

  30. Deulin E.A., Goncharov S.A., Segovia J.L., Nevshupa R.A., Mechanically stimulated solution of adsorbed hydrogen and deuterium in steel, Surf. Interface Anal. 30, 2000, 635–637.

    Article  Google Scholar 

  31. Deulin E.A., Nevshupa R.A., Deuterium penetration into the bulk of a steel ball of a ball bearing due to its rotation in vacuum, Appl. Surface Sci. 144–145, 1999, 283–286.

    Article  Google Scholar 

  32. Redhead P.A., Hobson J.P., Kornelson E.V., The Physical Basis of Ultrahigh Vacuum, Chapman and Hall, London, 1968.

    Google Scholar 

  33. Gatsenko A.A., Repa P., Deulin E.A., Research of the silicon monocrystal dry friction at different vacuum degrees, Friction, Wear, Lubrication (Electron Resource 15, 2002, 4 pp. [in Russian].

    Google Scholar 

  34. Nosovsky I.G., Residual Gases Influence on the Wear of Metals, Tekhnika, Kiev, 1968 [in Russian].

    Google Scholar 

  35. Deulin E.A., Papko V.M., Yurkov U.V., Influence of the vacuum ball bearing reliability on the output of atomized technological equipment, in Abstracts Conference USSR BMSTU, Moscow, 1979, pp. 38–44 [in Russian].

    Google Scholar 

  36. Sherge M., Li X., Schaefer J.A., Tribology Lett. 6, 1999, 215–220.

    Article  Google Scholar 

  37. Deulin E.A., Gladyshev I.V., Residual pressure and temperature influence on SiO2-SiO2 friction coefficient, in Proceedings Nordtrib 2002, Keynotes and Abstracts, 2000, p.176.

    Google Scholar 

  38. Gatsenko A.A., Repa P., Deulin E.A., Friction coefficient variation of smooth surfaces in vacuum, in Abstract Book of 9th Joint Vacuum Conference, Graz (Austria), 2002, p. 20.

    Google Scholar 

  39. Silverts A., Z. Metallkunde 21, 1929, 37.

    Google Scholar 

  40. Akagi K., Tsukada M., Theoretical study of hydrogen relay dissociation of water molecules on Si (001) surfaces, Surface Sci. 438, 1999, 9–17.

    Article  Google Scholar 

  41. Kuznetsov A.M., Water adsorption on metallic surface, Soros Education J. 6(5), 45–51 [in Russian].

    Google Scholar 

  42. Nevshupa R.A., Nakayama K., Triboemission behavior of photons at dielectric/dielectric sliding: Time dependence nature at 10−4–104 s, J. Appl. Phys. 93(11), 2003, 1.

    Google Scholar 

  43. Malev M.D., Gas adsorption and gas release of metals, Vacuum 23(2), 1973.

    Google Scholar 

  44. Deulin E.A., Rodina E.A., Adsorbed water as a source of gases which are dissoluted in the materials, Vacuum Technique and Technology 13(2), 2003, 77–82.

    Google Scholar 

  45. Crank J., The Mathematics of Diffusion, Oxford University Press, 1956.

    Google Scholar 

  46. Stark J.P., Solid State Diffusion, New York, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Deulin .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Deulin, E.A., Mikhailov, V.P., Panfilov, Y.V., Nevshupa, R.A. (2010). Friction in Vacuum. In: Mechanics and Physics of Precise Vacuum Mechanisms. Fluid Mechanics and Its Applications, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2520-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2520-3_3

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2519-7

  • Online ISBN: 978-90-481-2520-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics