Skip to main content

Teaching Control and Robotics Using the Web

  • Chapter
  • First Online:
Web-Based Control and Robotics Education

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 38))

Abstract

Web-based control and robotics distance education is a growing field of engineering education with a substantial amount of educational material and many teaching tools and platforms already available. Many educational institutes are adopting distance education programs in most of their courses including those which must be followed by hands-on experimentation. In distance education programs the traditional face-to-face teacher communication and interaction are replaced by technological tools (i.e., voice, video, data print, multimedia). Through a number of studies it was demonstrated that with the proper care (selection of method, technology, student/teacher interaction means, etc.), teaching and studying at a distance can be equally successful as traditional face-to-face instruction.

Web-based training (WBT) is defined as any skill or knowledge transfer through the WWW as the distribution channel. In [1], the state-of the-art of WBT is provided, including its growth and the industry trends. The factors that drive Web-based training today, the Web’s inherent strengths, Web-based learning models, virtual learning spaces, content development, critical design elements, instruction design, and sorting out WBT, are deeply considered in this study. It is remarked that today there is actually a shift from “use” of software to “workspace competencies” (e.g., instead of teaching the “Word and Excel”, the topic “Creating Year-end Reports” is taught so that the learner is getting the skills to “use” of software as a by-product of learning what he/she really needs to learn). The Web reduces the capital barriers for distributed learning and so it is a promising breakthrough. In [2], a thorough classification of WBT is provided on the basis of several characteristics, such as purpose types, learning skills, learner’s role, methods, interactions, etc.). In [3, 4], a study of the characteristics of Websites as teaching and learning environments, is made. This study is based on a taxonomy of Web-based learning environments (using 100 variables in four dimensions) that was applied to 436 Websites concerning science, mathematics and technology. The overall conclusion of this study is summarized as “one step ahead for the technology, two steps back for the pedagogy.” The University of Idaho, College of Engineering Outreach, Moscow, has produced a set of 13 Guides for distance education (DE) that cover all issues from the definition of DE (Guide 1), to differences of DE from standard education and the need of DE, up to producing a convenient glossary of DE terminology (Guide 13) [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Gallego, WBT: State – of – the art in web-based training, http://www.gracespace.com/weblearn/state.htm#critical.

  2. M. M. Driscoll, Defining internet and web-based training, Journal of Performance and Instruction, Vol. 36, No. 4, pp. 5–9, 1997,http://home.vicnet.net.au/?carlrw/net2000/ten_things_we_know.html.

  3. D. Mioduser, R. Nachmias, U. Lahav, A. Oren, Web-based learning environments: Current pedalogical and technological state, Journal of Research on Computing in Education, Vol. 33, No. 1, pp. 55–76, 2000, http://muse.tau.ac.il/publications/wble-54.html.

  4. D. Mioduser, R. Nachmias, A. Oren, O. Lahav, Web-based learning environments (WBLE): Current state and emerging trends, Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications (EDMEDIA ‘98), pp. 753–758, 1998.

    Google Scholar 

  5. University of Idaho, Distance Education at a Glance (Guides 1 through 13), College of Engineering Outreach, Moscow, October 1995, http://www.uidaho.edu/eo.

  6. G. J. C. Cpinga, M. H. G. Verhaegen, M. J. J. M. van de Ven, Toward a web-based study support environment for teaching automatic control, IEEE Control Systems Magazine, Vol. 20, pp. 8–19, Aug. 2000, http://lcewww.et.tudelft.ne/?babuska/Gerald.html.

  7. Drexel University, Laboratory development for robotics and automation education using Internet based technology, 2006, http://www.drexel.edu/goodwin/faculty/ASEENSFCon06_final.pdf.

  8. M. Terbuc, S. Uran, A. Rojko, K. Jezernik, Web based education of robotics and mechatronics at the University of Maribor, Proceedings of the Conference on Advances in Internet Technologies and Applications (CAITA 2004), Purdue, USA, July 8–11, 2004.

    Google Scholar 

  9. M. S. Zywno, D. C. Kennedy, Integrating the internet, multimedia components, and hands-on experimentation into problem-based control education, Proceedings of the 30th ASEE/IEEE Frontiers in Education Conference, Kansas City, MO, Oct. 2000.

    Google Scholar 

  10. D. J. Hagreaves, Student learning and assessment are inextricably linked, European Journal of Engineering Education, Vol. 4, No. 22, pp. 401–410, 1997.

    Article  Google Scholar 

  11. A. Khamis, F. Rodriguez, M. Salichs, Multiact approach for building web-based educational environments: Mobile robotics course as a case study, Proceedings of 11th Mediterranean Conference on Control and Automation (MED ‘03), Rhodes, Greece, June 18-20, 2003.

    Google Scholar 

  12. I. Masar, A. Bischoff, M. Gerke, Remote experimentation in distance education for control engineers, Proceedings of 5th International Conference on Virtual University, Bratislava, Slovakia, Dec. 16-17, 2004.

    Google Scholar 

  13. S. E. Poindexter, B. S. Heck, Using the Web in your courses: What can you do? what should you do?, IEEE Control Systems Magazine, Vol. 19, No. 1, pp. 83–92, 1999.

    Article  Google Scholar 

  14. S. G. Tzafestas, Teaching control engineering over the internet: A rapidly growing approach with future, In: S. Pennachio (ed.), Recent Advances in Control Systems, Robotics and Automation (3rd edition), Internationalsar.org, 2009.

    Google Scholar 

  15. S. H. Yang, J. L. Alty, Development of a distributed simulator for control experiments through the internet, Future Generation Computer Systems, Vol. 18, pp. 595–611, 2002.

    Article  MATH  Google Scholar 

  16. C. Schmidt, The virtual lab VCLAB for education on the Web, Proceedings of the 17th American Control Conference, Philadelphia, PA, pp. 1314-1318, 1998.

    Google Scholar 

  17. K. M. Lee, W. Daley, T. McKlin, An interactive learning tool for dynamic systems and control, Proceedings of the International Mechanical Engineering Congress & Exposition, Anaheim, CA, pp. 71-76, 1998.

    Google Scholar 

  18. VRML Archives.http://web3d.org/x3d/vrml/index/html.

  19. G. Carnevali, G. Buttazo, A virtual laboratory environment for real time experiments, Proceedings of the 5th IFAC International Symposium on Intelligent Components and Instruments for Control Applications (SICICA ‘03), Aveiro, Portugal, pp. 39-44, July 9-11, 2003.

    Google Scholar 

  20. P. Gai, L. Abeni, M. Giorgi, G. Buttazo, A new Kernel approach for modular real-time system development, Proceedings of the 13th IEEE Euromicro Conference on Real Time Systems, Delft, The Netherlands, 2001.

    Google Scholar 

  21. R. Puerto, L. M. Limenez, O. Reinoso, C. Fernandez, R. Neco, Remote control laboratory using Matlab and Simulink: Application to a dc motor model, Proceedings of the Second IFAC Workshop on Internet Based Control Education (IBCE 2004), Grenoble, France, Sept. 5-7, 2004.

    Google Scholar 

  22. S. Uran, D. Hercog, K. Jezernik, MATLAB Web server and web-based control design learning, Proceedings of the 3rd IEEE Annual Conference on Industrial Electronics (IECON ‘2006), pp. 5420–5425, 2006.

    Google Scholar 

  23. B. Duan, K.-V. Ling, H. Mir, M. Hosseini, R. Kheng, G. Leng, An online laboratory framework for control engineering courses, International Journal of Engineering Education, Vol. 21, No. 6, pp. 1068–1075, 2005.

    Google Scholar 

  24. M. Casini, D. Prattichizzo, A. Vicino, The automatic control telelab: A web-based technology for distance learning, IEEE Control Systems Magazine, Vol. 24, No. 3, pp. 36–44, June 2004, http://dii.unisi.it.

  25. Q. Yu, B. Chen, H. H. Cheng, Web-based control system design and analysis: Design, implementation, and salient features, IEEE Control Systems Magazine, Vol. 24, No. 3, pp. 45–47, June 2004, http://softintegration.com/webservices/control.

    Article  Google Scholar 

  26. C. Martin, A. Urquia, S. Dormido, Implementation of interactive virtual laboratories for control education using modelica, Proceedings of European Control Conference 2007 (ECC ‘07), Kos, Greece, pp. 2679-2686, July 2007.

    Google Scholar 

  27. R. Safaric, M. Truntic, D. Hercog, G. Pacnic, Control and robotics remote laboratory for engineering education, International Journal of Online Engineering (iJOE), www.i-joe-org.

  28. A. Tanoto, U. Witkowski, U. Ruckert, Teleworkbench: A teleoperated platform for multi-robot experiments, Proceedings of AMiRE 2005, Fukui University, Japan, Sept. 21–22, 2005.

    Google Scholar 

  29. C. S. Tzafestas, N. Palaiologou, M. Alifragis, Virtual and remote robotics laboratory, IEEE Transactions on Education, Vol. 49, No. 3, pp. 360–369, 2006.

    Article  Google Scholar 

  30. M. Sedlak, K. Zakova, Remote experiments in Matlab, Proceedings.of European Control Conference (ECC ‘07), Kos, Greece, pp. 2707-2713, July, 2007.

    Google Scholar 

  31. M. Chaabene, K. Mkaouar, M. Ouali, A web-based interactive real laboratory for process engineering education, Journal of Computer Science, Vol. 3, No. 7, pp. 540–547, 2007.

    Article  Google Scholar 

  32. J. Schwarz, A. Polze, K. Wehner, L. Sha, Remote lab: A reliable tele-laboratory environment, Proceedings of International Conference on Internet Computing (IC ‘2000), Las Vegas, NV, pp. 55–61, June 26-29, 2000.

    Google Scholar 

  33. H. Hoyer, A. Jochheim, C. Rohrig, A. Bischoff, A multiuser virtual-reality environment for a tele-operated laboratory, IEEE Transactions on Education, Vol. 47, pp. 121–126, Feb. 2004.

    Article  Google Scholar 

  34. Real Systems in Virtual Lab. Access to the remote web-based experiments of theFern Universitat in Hagen (Department of Electrical Engineering), http://rsv1.fernuni-hagen.de/sps/sprail.

  35. K. Yeung, J. Huang, Development of a remote-access laboratory: A dc motor control experiment, Computers in Industry, Vol. 52, No. 3, pp. 305–311, 2003, http://www.acae.cuhk.edu/ohk/?accl/ibc/.

  36. J. Z. Zhang, A. K. Ball, M. Clare, W. Extine, Design of a real-time remote-access engineering laboratory using integrated Web service and wireless technology for distance learners, World Transactions on Engineering Technology and Education, Vol. 4, No. 2, pp. 231–234, 2005.

    Google Scholar 

  37. N. J. Ploplys, P. A. Kawka, A. G. Alleyne, Closed-loop control over wireless networks, IEEE Control Systems Magazine, Vol. 24, No. 3, pp. 58–71, 2004.

    Article  Google Scholar 

  38. H. Ye, G. Walsh, L. Bushnell, Wireless local area networks in the manufacturing industry, Proceedings of 2000 American Control Conference, Chicago, IL, pp. 2236-2367, June 2000.

    Google Scholar 

  39. Marton, Log Me In in a corporate environment, White Paper 3am Labs., 2004, http://secure.logmein.com/wp_lmi_corporate.pdf.

  40. Marton, Log Me In security: An in-depth look, White Paper 3am Labs, 2004, http://secure.logmein.com/wp_lmi_security.pdf.

  41. R. Goertz, R. Thompson, Electronically controlled manipulator, Nucleonics, Vol. 12, No. 11, pp. 46–47, 1954.

    Google Scholar 

  42. T. B. Sheridan, Telerobotics, Automation and Human Supervisory Control, MIT Press, Cambridge, MA, 1992.

    Google Scholar 

  43. S. G. Tzafestas, C. S. Tzafestas, Virtual reality in telerobotics: An overview and two case studies, Proceedings of the 4th International Conference on Software for Electrical Engineering Analysis and Design (Electrosoft ‘99), Seville, Spain, May 17–19, 1999.

    Google Scholar 

  44. T. Mirfakhrai, S. Payandeh, A delay prediction approach for teleoperation over the internet, Proceedings of IEEE International Conference on Robotics and Automaion (ICRA ‘02), May 11–15, 2002.

    Google Scholar 

  45. R. J. Anderson, M. W. Spong, Bilateral control of teleoperators with time delay, IEEE Transactions on Automatic Control, Vol. AC-34, No. 5, pp. 494–501, May 1989.

    Article  MathSciNet  Google Scholar 

  46. G. Niemeyer, J. Slotine, Towards force reflecting teleoperation over the internet, Proceedings International Conference on Robotics and Automation (ICRA ‘98), Leuven, Belgium, pp. 1909–1915, 1998.

    Google Scholar 

  47. K. Brady, T. J. Tarn, Internet-based remote teleopetation, Proceedings of IEEE International Conference on Robotics and Automation, pp. 65-70, 1998.

    Google Scholar 

  48. S. Munir, W. J. Book, Internet-based teleoperation using wave variable with prediction, Procedings of IEEE/ASME Trans on Mechatronics, Vol. 7, pp. 124–133, 2002.

    Article  Google Scholar 

  49. W. H. Zhu, S. E. Salcudean, Stability guaranteed teleoperation: An adaptive motion/force control approach, IEEE Transactions on Automatic Control, Vol. AC-45, No. 11, pp. 1951–1969, 2000.

    MathSciNet  Google Scholar 

  50. D. A. Lawrence, Stability and transparency in bilateral teleoperation, IEEE Transactions on Robotics and Automation, Vol. 9, No. 5, pp. 625–637, 1993.

    Article  MathSciNet  Google Scholar 

  51. A. Sano, H. Fujimwra, M. Tanaka, Gain scheduled compensation for time delay of bilateral teleoperation systems, Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 1916–1923, 1998.

    Google Scholar 

  52. S. G. Tzafestas, P. A. Prokopiou, Compensation of teleoperator modeling uncertainties with sliding-mode controller, Robotics and Computer-Integrated Manufacturing, Vol. 13, No. 1, pp. 9–20, 1997.

    Article  Google Scholar 

  53. P. A. Prokopiou, S. G. Tzafestas, W. S. Harwin, A novel scheme for human-friendly and time delays robust neuropredictive teleoperation, Journal of Intelligent and Robotic Systems, Vol. 25, No. 4, pp. 311–340, 1999.

    Article  Google Scholar 

  54. P. A. Prokopiou, C. S. Tzafestas, E. S. Tzafestas, S. G. Tzafestas, Neural network robust-adaptive telemanipulator control: Comparison with sliding-mode control, System Analysis Modelling Simulation, Vol. 33, pp. 259–294, 1998.

    MATH  Google Scholar 

  55. K. Goldberg, M. Maschna, S. Gentner, N. Rothenberg, C. Sutter, J. Wiegley, Desktop teleoperation via the WWW, Proceedings of the IEEE International Conference on Robotics and Automation, pp. 654–659, 1995.

    Google Scholar 

  56. http://telegarden.aec.at.

  57. http://telerobot.mech.uwa.edu.au.

  58. http://netrolab.cs.rdg.ac.uk.

  59. G. T. Mc Kee, A virtual robotics laboratory for research, Proceedings of SPIE, Vol. 25, No. 89, pp. 162–171, 1995.

    Article  Google Scholar 

  60. B. G. Brooks, G. T. McKee, The visual acts model for automated camera placement during teleoperation, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2001), Korea, 2001.

    Google Scholar 

  61. J.-Y. Mignolet, S. Vernalde M. Engels, A low-power reconfigurable appliance camera, Revue High Frequency Electronique Telecommunications, Vol. 4, No. 4, pp. 4–11, 2000.

    Google Scholar 

  62. T. Kaga, S. Nojima, E. Nanma, M. Tamura, H. Nakagane, Internet camera system, Matsushita Technical Journal, Vol. 44, No. 5, pp. 66–73, 1998.

    Google Scholar 

  63. D. Kimber, Q. Liu, J. Foote, L. Wilcox, Capturing and presenting share multi-resolution video, Proceedings of SPIE (ITCOM 2002), Vol. 48-62, pp. 261-271, Boston, MA, July 2002.

    Google Scholar 

  64. Q. Liu, D. Kimber, L. Wilcox, M. Cooper, J. Foote, J. Boreczky, Managing a camera system to serve different video requests, Proceedings of IEEE International Conference on Multimedia and Expo (ICME ‘2002), Lausanne, Switzerland, Vol. 2, pp. 13–16, Aug. 2002.

    Article  Google Scholar 

  65. D. Song, K. Y. Goldberg, ShareCam Part I: Interface, system architecture, and implementation of a collaboratively controlled robotic webcam, Proceedings of IEEE/RSJ International Conference on Intelligent Robots (IROS ‘03), Nov. 2003, http://www.tele-actor.net/sharecam/.

  66. D. Song, A. Pashkevich, K. Goldberg, Share Cam Part II: Approximate and distributed algorithms for a collaborative controlled robotic webcam, Proceedings of IEEE/RSJ International Conference on Intelligent Robots (IROS ‘03), Nov. 2003.

    Google Scholar 

  67. D. Song, K. Y. Goldberg, Approximate algorithms for collaboratively controlled robotic camera, IEEE Transactions on Robotics, Vol. 23, No. 5, pp. 1061–2007, Oct. 2007.

    Article  Google Scholar 

  68. M. Perry, D. Agarwal, Remote control for video-conferencing, Proceedings of the International conference of the Information Resources Management Association., Anchorage, AK, USA, 2000.

    Google Scholar 

  69. D. Schmidt, B. Maule, I. Roth, Performance teletests for industrial robots by internet, Proceedings of 1st IFAC Conference on Telematics Applications in Automation and Robotics (TA 2001), Weingraten, Germany, 2001.

    Google Scholar 

  70. N. Chong, T. Kotoku, K. Ohba, K. Komoriya, N. Matsuhira, K. Tanie, Remote coordinated controls in multiple telerobot cooperation, Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ‘2000), Vol. 4, pp. 3138–3143, Apr. 2000.

    Google Scholar 

  71. K. Kurose and K. Ross, Computer Networking, Addison-Wesley, Reading, MA, 2001.

    Google Scholar 

  72. J. C. Bolot, Characterizing end-to-end packet delay and loss in the internet, Journal of High-Speed Networks, Vol. 2, pp. 305–323, 1993.

    Google Scholar 

  73. S. B. Moon, J. Kurose, P. Skelly, D. Towsley, Correlation of packet delay and loss in the internet, Technical Report, Computer Science Department, University of Massachusetts, USA, Jan. 1998.

    Google Scholar 

  74. V. Paxson, End-to-end packet dynamics, Proceedings of ACM (SIGCOMM ‘97), pp. 139–152, Sept. 1997.

    Google Scholar 

  75. M. Allman, V. Paxson, On Estimating end-to-end path properties, Proceedings of the ACM (SIGCOMM ‘99), Aug. 1999.

    Google Scholar 

  76. Adams et al., The use of end-to-end multicast measurements for characterizing internal network behavior, IEEE Communications, Vol. 38, pp. 152–159, 2000.

    Article  Google Scholar 

  77. J. Huang, Neurocontrol and telerobotic systems with time delays, Ch.8: in: F. L. Lewis, J. Campos, R. Selmic, Neuro-Fuzzy Control of Industrial Systems with Actuator Nonlinearities, SIAM, Philadelphia, PA, 2002.

    Google Scholar 

  78. Y. Tipsuwan, M.-Y. Chow, Control methodologies in networked control systems, Control Engineering Practice, Vol. 11, No. 10, pp. 1099–1111, 2003.

    Article  Google Scholar 

  79. H. Che, S.-Q. Li, Fast algorithms for measurement-based traffic modeling, IEEE Journal on Selected Areas in Communications, Vol. 16, No. 5, pp. 612–625, June 1998.

    Article  Google Scholar 

  80. L. A. Kulkarni, S.-Q. Li, Measurement-based traffic modeling: Capturing important statistics, Journal Stochastic Modeling, Vol. 14, No. 5, pp. 1113–1150, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  81. E. Kamrani, H. R. Momeni, A. R. Sharafat, Modeling internet delay dynamics for teleoperation, Proceedings of the 2005 IEEE Conference on Control Applications, Toronto, Canada, pp. 1528-1533, Aug. 2005.

    Google Scholar 

  82. S. H. Low, F. Paganini, J. Wang, S. Adlakha, J. C. Doyle, Internet congestion control: An analytical perspective, IEEE Control Systems Magazine, Vol. 7, pp. 28–43, Feb. 2002.

    Article  Google Scholar 

  83. M. I. Can Dede, S. Tosunoglu, D. W. Repperger, Effects of time delay on force feedback teleoperation systems, Proceedings 12th Mediterranean Conference on Control and Automation (MED ‘04), Kusadasi, Aydin, Turkey, June 2004.

    Google Scholar 

  84. M. Yang, X. Rong Li, Predicting end-to-end delay of the internet using time-series analysis, University of New Orleans (Technical Report), Lake front, Nov. 2003.

    Google Scholar 

  85. G. E. Box, G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, CA, 1976.

    Google Scholar 

  86. H.-Y. Li, Y.-H. Ke, A novel network transmission architecture for internet-based process control systems, Proceedings of the IEEE (IECON ‘98), 31 Aug. – 4 Sept., pp. 0–3-xxix, 1998.

    Google Scholar 

  87. R. Braden, Resource reservation protocol-version 1 functional specification, IETF: RSVP Working Group, Draft-ietf-rsvp-spec-14, Nov. 1996.

    Google Scholar 

  88. S. G. Tzafestas, E. S. Tzafestas, Human-machine interaction in intelligent robotic systems: A unifying consideration with implementation examples, Journal of Intelligence and Robotic Systems, Vol. 32, No. 2, pp. 119–141, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  89. M. G. Helander, T. K. Landauer, P. V. Prabhu (eds.), Handbook of Human-Computer Interaction, North-Holland, Amsterdam, 1997.

    Google Scholar 

  90. S. G. Tzafestas, Knowledge-Based System Diagnosis, Supervision and Control, Plenum, London, 1989.

    Google Scholar 

  91. S. G. Tzafestas (Guest Editor), Special issue on systems modelling, analysis and design, System Analysis Modelling Simulation, Vol. 38, No. 2, 2000.

    Google Scholar 

  92. S. G. Tzafestas (ed.), Applied Control: Current Trends and Modern Methodologies, Marcel Dekker, New York, 1993.

    Google Scholar 

  93. Y. Piguet, D. Gillet, Java-based remote experimentation for control algorithms prototyping, Proceedings of 1999 American Control Conference, San Diego, CA, Vol. 2, pp. 1465-1469, 1999.

    Google Scholar 

  94. J.W. Overstreet, A. Tzes, An internet-based real-time control engineering laboratory, IEEE Control System Magazine, Vol. 19, pp. 19–34, 1999.

    Article  Google Scholar 

  95. S. Shirmohammadi, J. C. Oliveira, N. Georganas, Applet-based telecollaboration: A network centric approach, IEEE Multimedia, Vol. 5, pp. 64–73, Apr.-June 1998.

    Article  Google Scholar 

  96. J. C. Oliveira, S. Shirmohammadi, N. Georganas, Distributed virtual environment standards: A performance evaluation, Proceedngs of the 3rd IEEE/ACM International Workshop on Distributed Interactive Simulation & Real Time Applications, pp. 14-21, Oct. 1999.

    Google Scholar 

  97. B. Rasche, P. Rabe, A. P. Troeger, Distributed Control Lab, http://www.dcl.hpi.uni-potsdam.de/research/papers/virtuallab_2004_rasche_rube_polze.pdf > & < http://www.dcl.hpi.uni-potsdam.de/research/dcl/.

  98. A. Rasche, P. Troeger, M. Driska, A. Polze, Foucault’s pendulum in the distributed control lab, Proceedings of the 9th IEEE International Workshop on Object – Oriented Real-Time Dependable Systems, pp. 289-296, Oct. 1-3, 2003.

    Google Scholar 

  99. T. O’Reilly, What is Web 2.0 (30 Sept. 2005), http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/9/3/what-is-web-20.html.

  100. T. O’Reilly, Web 2.0 compact definition: Trying again (10 Dec. 2006), http://radar.oreilly.com/archives/200/12/web_20_compact.html.

  101. T. Berners-Lee, Developer Works Interviews (28 July 2006), http://www.ibm.com/developerworks/podcast/dwi/cm-int082206txt.html.

  102. D. Best, Web 2.0: Next big thing or next big internet bubble?, Lecture Web Information Systems, Eindhoven Technical University, 2006.

    Google Scholar 

  103. M. Sigala, Integrating Web 2.0 in e-learning environments: A socio-technical approach, International Journal of Knowledge and Learning, Vol. 3, No. 6, pp. 628–648, 2007.

    Article  Google Scholar 

  104. F. S. Quarteroni, Scientific Computing with Matlab and Octave, Springer, Berlin, 2006.

    Google Scholar 

  105. http://www.mathworks.com/products/matlab.

  106. http://www.matlabtutorials.com.

  107. P. Corke, A robotics toolbox for Matlab, IEEE Robotics and Automation Magazine, Vol. 3, No. 1, pp. 24–32, Mar. 1996, http://www.ict.csiro.au/downloads/robotics/.

  108. http://www.ee.ucr.edu/EEsystems/docs/Matlab.

  109. J. Travis, J. Kring, LabVIEW for Everyone: Graphical Programming Made Easy and Fun (3rd edition), Prentice-Hall, Upper Saddle River, NJ, July 2006.

    Google Scholar 

  110. LabVIEW Pricing and Products, http://ni.com/labview/.

  111. LabVIEW Student Edition, http://ni.com/labviewse/.

  112. VRML Archives, http://www.web3d.org/x3d/vrml/index/html.

  113. VRML and X3D Description, http://xml.coverpages.org/vrml-X3D.html > , < http://web3d.org/x3d/specifications/vrml/.

  114. Extensible 3D: XML Meets VRML, http://www.xml.com/pub/a/2003/08/06/x3d.html

  115. JAVA ONE: Sun – The bulk of Java is open sourced, http://open.itworld.com/4915/070508opsjava/page_1.html.

  116. The Java Language Environment, http://java.sun.com/docs/white/langenv/.

  117. Java Applets, http://java.sun.com/javase/6/docs/api/java/Applet.html.

  118. Java Applet Tag, http://java.sun.com/docs/books/tutorial/deployment/applet/applettag.html.

  119. Java Tutorials, http://java.sun.com/docs/books/tutorial.

  120. J. Gosling, B. Joy, G. Steele, G. Braha, The Java Language Specification (3rd edition), Addison-Wesley, Reading, MA 2005, http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html.

  121. PHP.Net History, http://php.net/history.

  122. http://php.net.

  123. http://gr.php.net/tut.php.

  124. http://omg.org.

  125. http://omg.org/gettingstarted/corba faq.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros G. Tzafestas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Tzafestas, S.G. (2009). Teaching Control and Robotics Using the Web. In: Tzafestas, S. (eds) Web-Based Control and Robotics Education. Intelligent Systems, Control and Automation: Science and Engineering, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2505-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2505-0_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2504-3

  • Online ISBN: 978-90-481-2505-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics