Skip to main content

Satellite Remote Sensing

  • Chapter
Drought Assessment
  • 1783 Accesses

Abstract

Accurate and reliable georeferenced information, early warning and alert message based on scientific monitoring techniques and methods would minimize the severity of the impending drought. Spatial and temporal co-ordinates and attributes would enhance the reliability and also, in communicating, the potential impact to the specific vulnerable groups of the society. The advancements made in the orbital resources satellite technology could aid in mapping the disaster area, prediction/forecasting of impending disaster and disaster relief management. They are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartholic, J.F., Namken, K.N. and Wiegand, C.L. (1972). Aerial thermal scanner to determine temperature of soil and crops canopies differing in water stress. Agronomy J., 6, pp. 603–608.

    Article  Google Scholar 

  • Brown, K.W. (1974). Calculation of evapotranspiration from crop surface temperature. Agricultural Meteorology, 14, pp. 199–209.

    Article  Google Scholar 

  • Carnahan, W.H. and Larson, R.C. (1990). An analysis of an urban heat sink. Remote sensing of Environment, 33, pp. 65–71.

    Article  Google Scholar 

  • Crist, E.P. and Cicone, R.C. (1984). Application of the Tosseled Cap concept for simulated thematic mapper data. Photogrammetric Engg. and Remote Sensing, 50(3), pp. 343–352.

    Google Scholar 

  • Flasse, S. and Verstraete, M.M. (1994). Monitoring the environment with vegetation indices, comparison of NDVI and GEMI using AVHRR data over Africa. In: Vegetation, modeling and climate change effects (eds) Veroustraete F. and Ceulemans, R. SBC Academic Publishing, The Hague, pp. 107–135.

    Google Scholar 

  • Goita, K. and Rayer, A. (1992). Land surface climatology and land cover change monitoring since 1973 over North Sahelian Zone (Ansongo Mali) using Landsat data. GeoCarto International, 1, pp. 15–28.

    Google Scholar 

  • Hall, F.G., Shimbakuro, Y.E. and Huemmrich, K.F. (1995). Remote sensing of forest biophysical structure using mixture decomposition and geometric reflectance models. Ecological Applications, 5(4), pp. 993–1013.

    Article  Google Scholar 

  • Hanson, R.L. (1991). Evapotranspiration and droughts. In: US Geol. Survey Water Supply Paper 2375, pp. 99–104.

    Google Scholar 

  • Janiski, M.F. (1996). Estimation of subpixel vegetation density of natural regions using satellite imagery. IEEE, Transactions of Geoscience and Remote Sensing, 34(3), pp. 804–813.

    Article  Google Scholar 

  • Joshi, A.K. (1998). Filtering applications in Geosciences. In: Remote sensing in Geoscience (eds) Tripathi, N.K. and Bajpai, V.N. Anmol Publications, New Delhi, pp. 39–55.

    Google Scholar 

  • Kant, Y. and Badarinath, K.V.S. (1998). Regional scale evapotranspiration estimation using satellite derived albedo and surface temperature. J. Indian Society of Remote Sensing, 26(3), pp. 129–134.

    Article  Google Scholar 

  • Klette, R. and Zamperoni, P. (1996). Hand book of image processing operators. John Wiley and Sons, Chicester, pp. 397.

    Google Scholar 

  • Kogan, F.N. (1995). Droughts of late 1980’s in the USA as derived from NOAA polar orbiting satellite data. Bulletin of American Meteorological Society, 76, pp. 655–668.

    Article  Google Scholar 

  • Kogan, F.N. (1997). Global drought watch from space. Bulletin of the American Meteorological Society, 78, pp. 621–636.

    Article  Google Scholar 

  • Liu, W.T. and Kogan, F.N. (1996). Monitoring regional drought using the Vegetation Condition Index. International Journal of Remote Sensing, 17, pp. 2,761–2,782.

    Article  Google Scholar 

  • Monteith, J.L. and Unsworth, M.H. (1990). Principles of Environmental Physics, 2nd Edition. Edward Arnold, London.

    Google Scholar 

  • Pinty, B. and Verstraete, M.M. (1992). GEMI: A non-linear index to monitor global vegetation from satellites. Vegetation, 101, pp. 15–20.

    Article  Google Scholar 

  • Rosema, A., Verhoef, W., Noorbergen, H. and Borgesius, J.J. (1992). A new forest light interaction model in support of forest monitoring. Remote Sensing of Environment, 42, pp. 23–41.

    Article  Google Scholar 

  • Robinove, C.J. and Chavez, (1981). Arid land monitoring using AVHRR NDVI data, reduction of environmental and inter-annual variability. International J. of Remote Sensing, 18, pp. 1059–1077.

    Google Scholar 

  • Sabins, R.F. (1978). Remote sensing — Principles and Interpretation. WH Freeman and Co, San Francisco, 425 pp.

    Google Scholar 

  • Siegal, B.S. and Gillespie, (1980). Remote sensing in Geology. John Wiley and Sons, New York, 702 pp.

    Google Scholar 

  • Tucker, C.J., Townshend, J.R.G. and Goff, T.E. (1985). African land-cover classification using satellite data. Science, 227, pp. 369–375.

    Article  Google Scholar 

  • Tucker, C.J. and Sellers, P.J. (1986). Satellite remote sensing of primary production. International J. Remote Sensing, 7, pp. 1395–1416.

    Article  Google Scholar 

  • Valor, E. and Caselles, V. (1996). Mapping land surface emissivity from NDVI. Application to European, African and South American areas. Remote Sensing of Environment, 57, pp. 167–184.

    Article  Google Scholar 

Further Reading

  • Barett, E.C. and Curtis, L.F. (1982). Introduction to Environmental remote sensing. Chapman and Hall, London, 352 pp.

    Google Scholar 

  • Bhattacharya, A., Reddy, C.S.S., Reddy, P.R., Rao, D.P. and Chandramouli, K. (1991). Monitoring of live volcanic activity in Barren island, South Andaman, using satellite data. Interface, 2(3), p. 2.

    Google Scholar 

  • Billingsley, F.C. (1983). Data processing and preprocessing. In: Manual of Remote sensing (ed.) Simonett, D.S. American Society of Photogrammetry, Virginia, pp. 719–792.

    Google Scholar 

  • Tucker, C.J. and Choudhary, B.J. (1987). Satellite remote sensing of drought conditions. Remote Sensing of Environment, 23, pp. 243–251.

    Article  Google Scholar 

  • Venkataratnam, L., Rao, P.V.N., Srinivas, B.R.M., Ramana, K.V.R. and Dwivedi, R.S. (1993). Soil moisture estimation using ERS-1 Synthetic Aperture Radar data. Proceedings 2nd ERS-1 symposium: Space at the service of our environment, Hamburg, Germany. 11–15 October.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Capital Publishing Company

About this chapter

Cite this chapter

Nagarajan, R. (2009). Satellite Remote Sensing. In: Drought Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2500-5_6

Download citation

Publish with us

Policies and ethics