Skip to main content

Earthquakes in India: Hazards, Genesis and Mitigation Measures

  • Chapter
Natural and Anthropogenic Disasters

Abstract

Earthquake, as its name suggests, means shaking of the ground which is caused by a sudden release of stored elastic energy in the rock mass that had accumulated as strain over time along faults. Seismic waves are generated due to sudden release of energy which extend outward from the point of origin (called “epicenter”) like water ripples. The speed of these waves depends on the geologic composition of the materials through which they pass. Earthquakes can occur at a range of depths, and the focal depths (distance below the earth’s surface at which accumulated energy is released) from 0 to 70 km are considered shallow, from 70 to 300 km are considered intermediate and greater than 300 km are considered deep (Richter, 1958). Some 50,000 earthquakes occur on an average every year as the earth’s tectonic plates shift and adjust, including some of potentially devastating magnitude releasing enormous amounts of energy. Approximately 75% of the world’s population live in the areas that were affected at least once by natural disasters namely earthquake, tropical cyclone, flood or drought between 1980 and 2000 (UNDP, 2004). Potential earthquakes often cause considerable causalities and economic damage, coupled with significant hydrologic/hydrogeologic changes (e.g., UNDP, 2004; Allen, 2007; Manga and Wang, 2007). In addition, many secondary hazards/disasters such as landslides, rockfalls, avalanches, tsunamis, etc. are known to occur in the aftermath of an earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya, S.K., Kayal, J.R., Roy, A. and Chaturvedi, R.K. (1988). Jabalpur earthquake of 22 May 1997. Journal of the Geological Society of India, 51: 295–304.

    Google Scholar 

  • Allen, R.M. (2007). Earthquake hazard mitigation: New directions and opportunities. In: G. Schubert (editor), Treatise on Geophysics, Vol. 4, Elsevier, pp. 607–647.

    Google Scholar 

  • Ambraseys, N. and Bilham, R. (2000). A note on the Kangra Ms = 7.8 earthquake of 4 April 1905. Current Science, 79: 45–50.

    Google Scholar 

  • Ambraseys, N. and Bilham, R. (2003). Earthquakes and crustal deformation in northern Baluchistan. Bulletin Seismological Society of America, 93: 1573–1605.

    Article  Google Scholar 

  • Ambraseys, N. and Jackson, D. (2003). A note on early earthquakes in northern India and southern Tibet. Current Science, 84: 571–582.

    Google Scholar 

  • Ambraseys, N.N. and Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 158: 1–42.

    Article  Google Scholar 

  • Ammon, C.J., Ji, C, Thio, H.K., Robinson, D., Ni, S., Hjorleifsdottir, V, Kanamori, H., Lay, T., Das, S., Helmberger, D., Ichinose, G., Polet, J. and Wald, D. (2005). Rupture Process of the 2004 Sumatra-Andaman Earthquake. Science, 308: 1133–1139.

    Article  Google Scholar 

  • Auden, J.B. (1949). A geological discussion on the Satpura hypothesis and Garo Rajmahal gaps. Proceedings of the National Institute Science of India, Vol. 15, pp. 315–340.

    Google Scholar 

  • Avouac, J.-P. (2003). Mountain Building, erosion and the seismic cycle in the Nepal Himalaya. Advances in Geophysics, 46: 1–80.

    Google Scholar 

  • Banerjee, P. and Burgmann, R. (2002). Convergence across the northwest Himalaya from GPS measurements. Geophysical Research Letters, 29: doi: 10.1029/2002 GL015184.

    Google Scholar 

  • Banerjee, P., Burgmann, R., Nagarajan, B. and Apel, E. (2008). Intraplate deformation of the Indian subcontinent. Geophysical Research Letters, 35: LI 8301, doi:10.1029/2008GL035468.

    Google Scholar 

  • Banerjee, P., Pollitz, F.F. and Bürgmann, R. (2005). The size and duration of the Sumatra-Andaman earthquakes from far-field static offsets. Science, 308: 1769–1772.

    Article  Google Scholar 

  • Baumbach, M.H., Grosser, H.G., Schmidt, A., Paulat, A., Rietbrock, C.V., Rao, R., Raju, P.S., Sarkar, D. and Mohan, I. (1996). Study of the foreshocks and aftershocks of the intraplate Latur earthquake of 30 September 1993, India. Memoir Geological Society of India, 35: 33–63.

    Google Scholar 

  • Ben-Menahem, A., Aboudi, E. and Schild, R. (1974). The source of the great Assam earthquake: An intraplate wedge motion. Physics of the Earth and Planetary Interiors, 16: 109–131.

    Google Scholar 

  • Bettinelli, P., Avouac, J.P., Flouzat, M., Jouanne, F, Bollinger, L., Willis, P., and Chitrakar, G.R. (2006). Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. Journal of Geodesy, DOI 10.1007/sOO 190-006-0030-3.

    Google Scholar 

  • Bilham, R. (1995). Location and magnitude of the 1833 Nepal earthquake and its relation to the rupture zones of contiguous great Himalayan earthquakes. Current Science, 69: 101–128.

    Google Scholar 

  • Bilham, R. (1999). Slip parameters for the Rann of Kachchh, India, 16 June 1819 earthquake, qualified from contemporary accounts. In: LS. Stewart and C. Vita-Finzi (editors), Coastal Tectonics, Geological Society of London, Vol. 146, pp. 295–318.

    Google Scholar 

  • Bilham, R. (2001). Slow tilt reversal of the Lesser Himalaya between 1862 and 1992 at 78°E, and bounds to the southeast rupture of the 1905 Kangra earthquake. Geophysical Journal International, 144: 713–728.

    Article  Google Scholar 

  • Bilham, R. (2004). Earthquakes in India and the Himalaya: Tectonics, geodesy and history. Annals of Geophysics, 47: 839–858.

    Google Scholar 

  • Bilham, R. (2004). Urban earthquake fatalities: A safer world or worse to come? Seismological Research Letters, 76: 706–712.

    Article  Google Scholar 

  • Bilham, R. (2005). A flying start, then a slow slip. Science, 308: 1126–1127.

    Article  Google Scholar 

  • Bilham, R. (2006). Moving Mountains in Himalaya. National Geographic Society, Boulder, USA, pp. 132–137.

    Google Scholar 

  • Bilham, R. and Ambraseys, N. (2005). Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500-2000. Current Science, 88: 1658–1663.

    Google Scholar 

  • Bilham, R. and England, P. (2001). Plateau pop-up in the 1897 Assam earthquake. Nature, 410: 806–809.

    Article  Google Scholar 

  • Bilham, R. and Wallace, K. (2005). Future Mw >8 earthquakes in the Himalaya: Implications from the 26 Dec 2004 Mw = 9.0 earthquake on India’s eastern plate margin. Geological Survey of India, Special Publication, Vol. 8, pp. 1–14.

    Google Scholar 

  • Bilham, R., Bendick, R. and Wallace, K. (2003). Flextureofthe Indian plate and intraplate earthquakes. Proceedings Indian Academy of Sciences, Earth Planet Sciences, 112: 1–14.

    Google Scholar 

  • Bilham, R., Blume, F., Bendick, R. and Gaur, V.K. (1998). Geodetic constraints on the translation and deformation of India, implication for future great Himalayan earthquakes. Current Science, 74: 213–229.

    Google Scholar 

  • Bilham, R., Gaur, V.K. and Molnar, P. (2001). Himalayan seismic hazard. Science, 293: 1442–1444.

    Article  Google Scholar 

  • Bilham, R., Larson, K., Freymueller, J. and Project Idylhim members (1997). GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 386: 61–64.

    Article  Google Scholar 

  • Briggs, R., Sieh, K., Meltzner, A.J., Natawidjaja, D., Galetzka, J., Suwargadi, B., Hsu, Y-J., Simons, M., Hananto, N., Suprihanto, I., Prayudi, D., Avouac, J.P., Prawirodirdjo, L. and Bock, Y (2006). Deformation and slip along the Sunda Megathrust in the Great 2005 Nias-Simeulue Earthquake. Science, 311:1897–1901.

    Article  Google Scholar 

  • Catherine, J.K., Gahalaut, V.K. and Sahu, V.K. (2005). Constraints on rupture of the December 26, 2004, Sumatra earthquake from far-field GPS observations. Earth and Planetary Science Letters, 237: 673–679.

    Article  Google Scholar 

  • Chander, R. (1988). Interpretation of observed ground level changes due to the Kangra earthquake, northwest Himalaya. Tectonophysics, 149: 289–298.

    Article  Google Scholar 

  • Chander, R. (1989). On applying the concept of rupture propagation to deduce the location of the 1905 Kangra earthquake epicenter. Journal of the Geological Society of India, 33: 150–158.

    Google Scholar 

  • Chander, R. and Gahalaut, V.K. (1994). Preparations for great earthquakes seen in levelling observations along two lines across the Outer Himalaya. Current Science, 67: 531–534.

    Google Scholar 

  • Chander, R. and Gahalaut, V.K. (1999). On the cyclic nature of active crustal deformation in the Dehradun region. Himalayan Geology, 20: 87–92.

    Google Scholar 

  • Chander, R. and Kalpna (1997). On categorising induced and natural tectonic earthquakes near new reservoirs. Engineering Geology, 46: 81–92.

    Article  Google Scholar 

  • Chandra, U. (1978). Seismicity, earthquake mechanisms and tectonics along the Himalayan mountain range and vicinity. Physics of the Earth and Planetary Interior, 16: 8–92.

    Google Scholar 

  • Chen, W.P and Molnar, P. (1977). Seismic moments of major earthquakes and the average rate of slip in central Asia. Journal of Geophysical Research, 82: 2945–2969.

    Article  Google Scholar 

  • Chung, W.Y. (1993). Source parameters of two rift-associated intraplate earthquakes in peninsular India: the Bhadrachalam earthquake of April 13, 1969 and the Broach earthquake of March 23, 1970. Tectonophysics, 225: 219–230.

    Article  Google Scholar 

  • Dunn, J.A. (1939). Seismological observations by the geological survey. Memoir Geological Survey of India, 73: 76–87.

    Google Scholar 

  • Dunn, J.A., Auden, J.B. and Ghosh, A.M.N. (1939). Earthquake effects. Memoir Geological Survey of India, 73: 27–48.

    Google Scholar 

  • Fedotov, S.A. ( 1965). Regularities of the Distribution of Strong Earthquakes in Kamchatka, the Kurile Islands and Northeastern Japan. Tr. Inst. Fi:. Zemli Akad. Nauk SSSR, 36: 1–66.

    Google Scholar 

  • Gahalaut, V.K. and Chander, R. (1992). A rupture model for the great earthquake of 1897, northeast India. Tectonophysics, 204: 163–174.

    Article  Google Scholar 

  • Gahalaut, V.K. (2008). Coulomb stress changes due to 2005 Kashmir earthquake and implications on future seismic hazard. Journal of Seismology, DOI 10.1007/s 10950-008-9092-4.

    Google Scholar 

  • Gahalaut, V.K. and Chander, R. (1992). On the active tectonics of the Dehra Dun region from observations of ground elevation changes. Journal of Geological Society of India, 39: 61–68.

    Google Scholar 

  • Gahalaut, V.K. and Chander, R. (1997a). Evidence for an earthquake cycle in the NW outer Himalaya near 78°E longitude from precision levelling operations. Geophysical Research Letters, 24: 225–228.

    Article  Google Scholar 

  • Gahalaut, V.K. and Chander, R. (1997b). On interseismic changes and strain accumulation for great thrust earthquakes in the Nepal Himalaya. Geophysical Research Letters, 24: 1011–1014.

    Article  Google Scholar 

  • Gahalaut, V.K. and Chander, R. ( 1999). Geodetic evidence for accumulation of earthquake generating strains in the NW Himalaya near 75.5°E longitude. Bulletin Seismological Society of America, 89: 837–843.

    Google Scholar 

  • Gahalaut, V.K. and Kalpna (2001). Himalayan mid crustal ramp. Current Science, 81: 1641–1646.

    Google Scholar 

  • Gahalaut, V.K., Gupta, P.K., Chander, R. and Gaur, V.K. (1994). Minimum norm inversion of elevation change data for slips on the causative faults during the 1905 Kangra earthquake. Proceedings of the Indian Academy of Sciences (Earth and Planetary Sciences), 103: 401–411.

    Google Scholar 

  • Gahalaut, V.K., Nagarajan, B., Catherine, J.K. and Kumar, S. (2006). Constraints on 2004 Sumatra-Andaman earthquake rupture from GPS measurements in Andaman-Nicobar Islands. Earth Planetary Science Letters, 242: 365–374.

    Article  Google Scholar 

  • Gupta, H.K. (1992). Reservoir Induced Earthquake. Development in Geotechnical Engineering, Vol. 64, Elsevier, the Netherlands, 320 pp.

    Google Scholar 

  • Gupta, H.K. (2002). A review of recent studies of triggered earthquakes by artificial water reservoirs with special emphasis on earthquakes in Koyna, India. Earth-Science Reviews, 58: 279–310.

    Article  Google Scholar 

  • Gupta, H.K., Rastogi, B.K., Mohan, I., Rao, C.V.R.K., Sarma, S.V.S. and Rao, R.U.M. (1998). An investigation into the Latur earthquake of 29 September 1993 in southern India. Tectonophysics, 287: 299–318.

    Article  Google Scholar 

  • Gutenberg, B. (1956). Great earthquakes 1896-1903. Transaction American Geophysical Union, 37: 608–614.

    Google Scholar 

  • Gutenberg, B. and Richter, CF. (1954). Seismicity of the Earth and Associated Phenomena. Princeton University Press Princeton, NJ, 273 pp.

    Google Scholar 

  • Ishii, M., Shearer, P.M., Houston, H. and Vidale, J.E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by Hi-Net array. Nature, 435: 933–936.

    Google Scholar 

  • Iyengar, R.N. and Sharma, D. (1999). Some earthquakes of the Himalayan region from historical sources. Himalayan Geology, 20: 81–85.

    Google Scholar 

  • Jackson, M. and Bilham, R. (1994). Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. Journal of Geophysical Research, 99: 13897–13912.

    Article  Google Scholar 

  • Jade, S., Bhatt, B.C., Yang, Z., Bendick, R., Gaur, V.K., Molnar, P., Anand, M.B.and Kumar, D.(2004). Preliminary tests of plate-like or continuous deformation in Tibet. Geological Society of America Bulletin, 116: 1385–1391.

    Article  Google Scholar 

  • Jaiswal, K. and Sinha, R. (2007). Probabilistic seismic-hazard estimation for Peninsular India. Bulletin of the Seismological Society of America, 97: 318–330.

    Article  Google Scholar 

  • Johnston, A.C. and Kanter, L.R. (1990). Earthquakes in stable continental crust. Scientific America, 262: 68–75.

    Article  Google Scholar 

  • Jouanne, F., Mugnier, M., Pandey, M., Gamond, J., leFort, P., Surruier, L., Vigny, C. and Avouac, J.P. (1999). Oblique convergence in the Himalaya of western Nepal deduced from preliminary results. Geophysical Research Letters, 26: 1933–1936.

    Article  Google Scholar 

  • Kanamori, H. ( 1977). The energy release in great earthquakes. Journal of Geophysical Research, 82: 2981–2987.

    Article  Google Scholar 

  • Kayal, J.R. (2000). Seismotectonic study of the two recent SCR earthquakes in Central India. Journal of Geological Society of India, 55: 123–138.

    Google Scholar 

  • Khattri, K.N. (1987). Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya Plate boundary. Tectonophysics, 138: 79–92.

    Article  Google Scholar 

  • Khattri, K.N. (1992). Seismic hazard in Indian Region. Current Science, 62: 109–116.

    Google Scholar 

  • Khattri, K.N. and Tyagi, A.K. (1983). Seismicity patterns in the Himalayan plate boundary and identification of the areas of high seismic potential. Tectonophysics, 96: 281–297.

    Article  Google Scholar 

  • Khattri, K.N., Rogers, A.M., Perkins, D.M. and Algermissen, ST. (1984). A seismic hazard map of India and adjacent areas. Tectonophysics, 108: 93–108, 111-134.

    Article  Google Scholar 

  • Kumar, R.M. and Bhatia, S.C. (1999). A new seismic hazard map for the Indian plate region under the global seismic hazard assessment programme. Current Science, 77: 447–453.

    Google Scholar 

  • Kumar, S., Wesnousky, S.G., Rockwell, T.K., Briggs, R.W., Thakur, V.C. and Jayangondaperumal, R. (2006). Paleoseism ic evidence of great surface rupture earthquakes along the Indian Himalaya. Journal of Geophysical Research, 111, doi: 10.1029/2004JB003309.

    Google Scholar 

  • Lavé, J. and Avouac, J.P. (2000). Active folding of Fluvial terraces across the Siwalik Hills, Himalayas of central Nepal. Journal of Geophysical Research, 105: 5735–5770.

    Article  Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C.J., Nettles, M., Ward, S.N., Aster, R.C., Beck, S.L., Bilek, S.L., Brudzinski, M.R., Butler, R., DeShon, H.R., Ekström, G., Satake, K. and Sipkin, S. (2005). The great Sumatra-Andaman earthquake of 26 December 2004. Science, 308: 1127–1133.

    Article  Google Scholar 

  • Liu, L. and Zoback, M. (1997). Lithospheric strength and intraplate seismicity in the New Madrid seismic zone. Tectonics, 16: 585–595.

    Article  Google Scholar 

  • Mandai, P., Rastogi, B.K. and Sarma, C.S.P. (1998). Source parameters of Koyna earthquakes. Bulletin of Seismological Society of America, 88: 833–842.

    Google Scholar 

  • Manga, M. and Wang, C.-Y. (2007). Earthquake hydrology. In: G. Schubert (editor), Treatise on Geophysics, Vol. 4, Elsevier, pp. 293–320.

    Google Scholar 

  • Middlemiss, C.S. (1910). The Kangra Earthquake of 4 April 1905. Memoir Geological Survey of India, 38: 1–405.

    Google Scholar 

  • Molnar, P. (1987). The distribution of Intensity Associated with the 1905 Kangra earthquake and Bounds on the Extent of Rupture. Journal of the Geological Society of India, 29: 221–229.

    Google Scholar 

  • Molnar, P. (1990). A review of the seismicity and the rates of active underthrusting and deformation at the Himalaya. Journal of Himalayan Geology, 1: 131–154.

    Google Scholar 

  • Molnar, P. and Pandey, M.R. (1989). Rupture zones of great earthquakes in the Himalaya region. Proceedings of Indian Academy of Science, Earth Planetary Science, 98: 61–70.

    Google Scholar 

  • Nair, K.K.K., Jain, S.C. and Yedekar, D.B. (1985). Geology, structure and tctonics of the Son-Narmada-Tapti lineament zone. Records of Geological Survey of India, 117: 138–147.

    Google Scholar 

  • Nakamura, Y (1984). Development of the earthquake early-warning system for the Shinkansen, some recent earthquake engineering research and practical in Japan. The Japanese National Committee of the International Association for Earthquake Engineering, Tokyo, Japan, pp. 224–238.

    Google Scholar 

  • Ni, J. and Barazangi, M. (1984). Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya. Journal of Geophysical Research, 89: 1147–1163.

    Article  Google Scholar 

  • Oldham, R.D. (1899). Report on the great earthquake of June 12, 1897. Memoir of Geological Survey of India, 29: 1–379.

    Google Scholar 

  • Oldham, R.D. (1926). The Kutch earthquake of 16th June 1819 with a revision of the great earthquake of the 12th June 1897. Memoir of Geological Survey of India, Calcutta, 46: 80–147.

    Google Scholar 

  • Pandey, M.R. and Molnar, P. ( 1988). The distribution of intensity of the Bihar-Nepal earthquake of 15 January 1934 and bounds on the extent of the rupture zone. Journal of Geological Society of Nepal, 5: 22–44.

    Google Scholar 

  • Pandey, M.R., Tandukar, R.P., Avouac, J.P., Lave, J. and Massot, J.P. (1995). Interseismic strain accumulation on the Himalayan Crustal Ramp (Nepal). Geophysical Research Letters, 22: 751–754.

    Article  Google Scholar 

  • Pandey, M.R., Tandukar, R.P., Avouac, J.P., Vergne, J. and Héritier, Th. (1999). Seismotectonics of the Nepal Himalaya from a local seismic Network. Journal of Asian Earth Sciences, 17: 703–712.

    Article  Google Scholar 

  • Powell, CM. ( 1979). A speculative tectonic history of Pakistan and surroundings: Some constraints from the Indian ocean. Geodynamics of Pakistan, Geological Society of Pakistan, pp. 5–24.

    Google Scholar 

  • Rajendran, CP. and Rajendran, K. (2005). The status of central seismic gap: A perspective based on the spatial and temporal aspects of the large Himalayan earthquakes. Tectonophysics, 395: 19–39.

    Article  Google Scholar 

  • Rajendran, CP., Rajendran, K., Duarah, B.P., Baruah, S. and Earnest, A. (2004). Interpreting the style of faulting and paleoseismicity associated with the 1897 Shillong, northeast India, earthquake: Implications for regional tectonism. Tectonics, 23: TC4009, doi:10.1029/2003TC001605.

    Google Scholar 

  • Rajendran, K., Rajendran, CP, Thakker, M. and Tuttle, M.P. (2001 ). The 2001 Kutch (Bhuj) earthquake: Coseismic surface features and their significance. Current Science, 80: 1397–1405.

    Google Scholar 

  • Rastogi, B.K., Chadha, R.K., Sarma, C.S.R, Mandai, R, Satyanarayana, H.V.S., Raju, I.R, Kumar, N., Satyamurthy, C. and Rao, A.N. (1997). Seismicity at Warna reservoir (near Koyna) through 1995. Bulletin of Seismological Society of America, 87: 1484–1494.

    Google Scholar 

  • Richter, C.R (1958). Elementary Seismology. Freeman, San Francisco, California, 768 pp.

    Google Scholar 

  • Seeber, L. and Armbruster, J. (1981). Great detachment earthquakes along the Himalayan Arc and long-term forecasting. In: D.W. Simpson and RG. Richards (editors), Earthquake Prediction: An International Review, Maurice Ewing Series. American Geophysical Union, Vol. 4, pp. 259–277.

    Google Scholar 

  • Seeber, L., Armbruster, J.G. and Quittmeyer, R.C. (1981). Seismicity and continental subduction in the Himalayan arc. Inter-Union Commission on Geodynamics, Working Group, Vol. 6, pp. 215–242.

    Google Scholar 

  • Seeber, L., Ekstrom, G., Jain, S.K., Murty, C.V.R., Chandak, N. and Armbruster, J.G. (1996). The 1993 Killari earthquake in central India: A new fault in Mesozoic basalt flows? Journal of Geophysical Research, 101: 8543–8560.

    Article  Google Scholar 

  • Stein, S. and Okal, E.A. (2005). Speed and size of the Sumatra earthquake. Nature, 434: 581–582.

    Article  Google Scholar 

  • Sukhija, B.S., Rao, M.N., Reddy, D.V, Nagabhushanam, P., Hussain, S., Chadha, R.K. and Gupta, H.K. (1999). Paleoliquefaction evidence and periodicity of large prehistoric earthquakes in Shillong Plateau, India. Earth and Planetary Science Letters, 167: 269–282.

    Article  Google Scholar 

  • Sukhija, B.S., Rao, M.N., Reddy, D.V, Nagabhushanam, P., Kumar, D., Lakshmi, B.V and Sharma, P. (2002). Palaeoliquefaction evidence of prehistoric large/great earthquakes in North Bihar, India. Current Science, 83: 1019–1024.

    Google Scholar 

  • Sykes, L.R. (1971). Aftershock zones of great earthquakes, seismicity gaps, earthquake prediction for Alaska and the Aleutians. Journal of Geophysical Research, 76: 8021–8041.

    Article  Google Scholar 

  • Talwani, P., Kumarswamy, S.V. and Sawalwede, C.B. (1996). The Re-evaluation of Seismicity Data in the Koyna-Warna Area. Report of the University of South Carolina, South Carolina, USA.

    Google Scholar 

  • UNDP (2004). Reducing Disaster Risk: A Challenge for Development. United Nations Development Program (UNDP), Bureau for Crisis Prevention and Recovery, United Nations Plaza, New York.

    Google Scholar 

  • Vigny, C, Simons, W.J.F., Abu, S., Bamphenyu, R., Satirapod, C, Choosakul, N., Subarya, C, Socquet, A., Omar, K., Abidin, H.Z. and Ambrosius, B.A.C. (2005). Insight into the 2004 Sumatra-Andaman earthquake from GPS measurements in Southeast Asia. Nature, 436: 201–206.

    Article  Google Scholar 

  • Wallace, K., Bilham, R., Blume, F., Gaur, V.K. and Gahalaut, V. (2005). Geodetic constraint of the 1905 Kangra earthquake and interseismic deformation 1846-2001. Geophysical Research Letters, 32: L15307, doi: 10.1029/ 2005GL022906.

    Google Scholar 

  • Wu, Y.-M. and Kanamori, H. (2005). Experiment on an onsite early warning method for the Taiwan Early Warning System. Bulletin of the Seismological Society of America, 95: 347–353.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Capital Publishing Company

About this chapter

Cite this chapter

Gahalaut, V.K. (2010). Earthquakes in India: Hazards, Genesis and Mitigation Measures. In: Jha, M.K. (eds) Natural and Anthropogenic Disasters. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2498-5_2

Download citation

Publish with us

Policies and ethics