Skip to main content

Stratosphere—Troposphere Interactions in a Chemistry-Climate Model

  • Conference paper
Book cover Twenty Years of Ozone Decline
  • 1334 Accesses

Lower-middle atmosphere interactions include upward transport of water and trace gases into the tropical stratosphere and the downward transport of ozone into the extratropical troposphere. This chapter presents results from a recent chemistry-climate model (CCM) that comprehensively describes chemistry and transport processes from the surface to the mesosphere. The role of dynamical stratosphere—troposphere interactions is illustrated by simulations of the unusual stratospheric vortex split in September 2002. The model is used to study dehydration of air during transport through the tropical tropopause layer (TTL) and explain the seasonal variability of stratospheric dryness as observed in the “tape recorder” signal. Dehydration is caused by the sedimentation of ice crystals from TTL cirrus forming in the cold regions above cumulonimbus anvils. Further, the stratosphere—troposphere exchange (STE) of ozone is considered important in the ozone budget of the troposphere. In fact, STE of ozone played a stabilizing role in the oxidation capacity of the pre-industrial troposphere. However, its significance decreased due to the global prevalence of photochemical ozone formation caused by anthropogenic emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appenzeller, C., Holton, J. R., & Rosenlof, K. H. (1996). Seasonal variations of mass transport across the tropopause. Journal of Geophysical Research, 101, 15071–15078.

    Article  Google Scholar 

  • Brewer, A. W. (1949). Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quaterly Journal of the Royal Meteorological Society, 75, 351–363.

    Article  Google Scholar 

  • Butchart, N. et al. (2006). Simulations of the anthropogenic change in the strength of the Brewer-Dobson circulation. Climate Dynamics, 27, 727–741, doi: 10.1007/s00382-006-0162-4.

    Article  Google Scholar 

  • Dethof, A., O'Neil, A., & Slingo, J. (2000). Quantification of the isentropic mass transport across the dynamical tropopause. Journal of Geophysical Research, 105, 12279–12293.

    Article  CAS  Google Scholar 

  • Eyring, V. et al. (2006). Assessment of temperature, trace species and ozone in chemistry-climate model simulations of the recent past. Journal of Geophysical Research, 111, D22308, doi: 10.1029/2006JD007327.

    Article  Google Scholar 

  • Fischer, H., de Reus, M., Traub, M., Williams, J., Lelieveld, J., de Gouw, J., et al. (2003). Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmospheric Chemistry and Physics, 3, 739–745.

    CAS  Google Scholar 

  • Folkins, I., Loewenstein, M., Podolske, J., Oltmans, S. J., & Proffitt, M. (1999). A barrier to vertical mixing at 14 km in the tropics. Journal of Geophysical Research, 104, 22095–22102.

    Article  CAS  Google Scholar 

  • Fu, R., Hu, Y., Wright, J. S., Jiang, J. S., Dickinson, R. E., Chen, M., et al. (2006). Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau. Proceedings of the National Academy of Sciences, 103, 5664–5669.

    Article  CAS  Google Scholar 

  • Fueglistaler, S., Wernli, H., & Peter, T. (2004). Tropical troposphere-to-stratosphere transport inferred from trajectory calculations. Journal of Geophysical Research, 109, D03108, doi: 10.1029/2003JD004069.

    Article  Google Scholar 

  • Gettelman, A., & Birner, T. (2007). Insights into tropical tropopause layer processes using global models. Journal of Geophysical Research, 112, D23104, doi: 10.1029/2007JD008945.

    Article  Google Scholar 

  • Giorgetta, M. A., Manzini, E., Roeckner, E., Esch, M., & Bengtsson, L. (2006). Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. Journal of Climate, 19, 3882–3901.

    Article  Google Scholar 

  • Highwood, E. J., & Hoskins, B. J. (1998). The tropical tropopause. Quarterly Journal of the Royal Meteorological Society, 124, 1579–1604.

    Article  Google Scholar 

  • Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglas, A. R., Rood, R. B., & Pfister, L. (1995). Stratosphere-troposphere exchange. Review of Geophysics, 33, 403–440.

    Article  Google Scholar 

  • Holton, J. R., & Lelieveld, J. (1996). Stratosphere-troposphere exchange and its role in the budget of tropospheric ozone. In P. J. Crutzen & V. Ramanathan (Eds.), Clouds, Chemistry and Climate, NATO ASI Series, I 35 (pp. 173–190) Berlin: Springer.

    Google Scholar 

  • Hoor, P., Fischer, H., Lange, L., Lelieveld, J., & Brunner, D. (2002). Seasonal variations of a mixing layer in the tropopause region as identified by the CO-O3 correlation from in-situ measurements. Journal of Geophysical Research, 107, doi: 10.1029/2000JD000289.

    Google Scholar 

  • Hoor, P., Fischer, H., & Lelieveld, J. (2005). Tropical and extratropical air in the lowermost stratosphere over Europe: a CO-based budget. Geophysical Research Letters, 32, L07802, doi: 10.1029/2004GL022018.

    Article  CAS  Google Scholar 

  • Höpfner, M. et al. (2004). First spaceborne observations of Antarctic stratospheric ClONO2 recovery: Austral spring 2000. Journal of Geophysical Research, 109, D11308, doi: 10.1029/2004JD004609.

    Article  CAS  Google Scholar 

  • Jöckel, P. et al. (2006). The atmospheric chemistry general circulation model ECHAM5/MESSy: Consistent simulation of ozone from the surface to the mesosphere. Atmospheric Chemistry and Physics, 6, 5067–5104.

    Google Scholar 

  • Kentarchos, A. S., Roelofs, G. J., & Lelieveld, J. (2000). Simulation of extratropical synoptic scale stratosphere-troposphere exchange using a coupled chemistry-GCM: sensitivity to horizontal resolution. Journal of Atmospheric Sciences, 57, 2824–2838.

    Article  Google Scholar 

  • Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., & Jöckel, P. (2006). Technical Note: An implementation of dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy). Atmospheric Chemistry and Physics, 6, 4617– 4632.

    CAS  Google Scholar 

  • Krebsbach, M., Schiller, C., Brunner, D., Günther, G., Hegglin, M. I., Mottaghy, D., et al. (2006). Seasonal cycles and variability of O3 and H2O in the UT/LMS during SPURT. Atmospheric Chemistry and Physics, 6, 109–125.

    CAS  Google Scholar 

  • Lelieveld, J., Arnold, F., Bregman, A., Bürger, V., Crutzen, P., Fischer, H., et al. (1997). Chemical perturbation of the lowermost stratosphere through exchange with the troposphere. Geophysical Research Letters, 24, 603–606.

    Article  CAS  Google Scholar 

  • Lelieveld, J., & Dentener, F. J. (2000). What controls tropospheric ozone. Journal of Geophysical Research, 105, 3531–3551.

    Article  CAS  Google Scholar 

  • Lelieveld, J., Peters, W., Dentener, F. J., & Krol, M. C. (2002). Stability of tropospheric hydroxyl chemistry. Journal of Geophysical Research, 107, D23, 4715. doi: 10.1029/2002JD002272.

    Article  CAS  Google Scholar 

  • Lelieveld, J., Brühl, C., Jöckel, P., Steil, B., Crutzen, P. J., Fischer, H., et al. (2007). Stratospheric dryness: model simulations and satellite observations. Atmospheric Chemistry and Physics, 7, 1313–1332.

    Article  CAS  Google Scholar 

  • Lin, S. J., & Rood, R. B. (1996). Multi-dimensional flux-form semi-Lagrangian transport scheme. Monthly Weather Review, 124, 2046–2070.

    Article  Google Scholar 

  • Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., & Roeckner, E. (2006). The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. Journal of Climate, 19, 3863–3881.

    Article  Google Scholar 

  • Mote, P. W., Rosenlof, K. H., McIntyre, M. E., Carr, E. S., Gille, J. C., Holton, J. R., et al. (1996). An atmospheric tape recorder: The imprint of tropical tropopasue temperatures on stratospheric water vapour. Journal of Geophysical Research, 101, 3989–4006.

    Article  Google Scholar 

  • Newman, P. A., & Nash, E. R. (2005). The unusual southern hemisphere stratosphere winter of 2002. Journal of Atmospheric Sciences, 62, 614–628.

    Article  Google Scholar 

  • Reithmeier, C., & Sausen, R. (2002). ATTILA — Atmospheric tracer transport in a lagrangian model. Tellus, 54, 278–299.

    Article  Google Scholar 

  • Ricaud, P. et al. (2005). Polar vortex evolution during the 2002 Antarctic major warming as observed by the Odin satellite. Journal of Geophysical Research, 110, D05302, doi: 10.1029/2004JD005018.

    Article  CAS  Google Scholar 

  • Roeckner, E. et al. (2004). The atmospheric general circulation model ECHAM5. PART I: Model description, Max Planck Institute for Meteorology, MPI-Report 349. http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/349.pdf.

  • Roelofs, G. J., & Lelieveld, J. (1997). Model study of the influence of cross-tropopause O3 transports on tropospheric O3 levels. Tellus, 49B, 38–55.

    CAS  Google Scholar 

  • Rosenlof, K. H., Tuck, A. F., Kelly, K. K., Russel, J. M., & McCormick, P. (1997). Hemispheric asymmetries in water vapour and inferences about transport in the lowermost stratosphere. Journal of Geophysical Research, 102, 13213–13234.

    Article  CAS  Google Scholar 

  • Sander, R., Kerkweg, A., Jöckel, P., & Lelieveld, J. (2005). Technical note: The new comprehensive atmospheric chemistry module MECCA. Atmospheric Chemistry and Physics, 5, 445–450.

    Article  CAS  Google Scholar 

  • Schmidt, U., Engel, A., & Volk, M. (2001). Ist der globale Ozonabbau gestoppt? Wissenschafts-magazin der Johann Wolfgang Goethe-Universität, Frankfurt am Main, 4, 11–19.

    Google Scholar 

  • Stohl, A. et al. (2003). Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO. Journal of Geophysical Research, 108, D12, 8516, doi: 10.1029/2002JD002490.

    Google Scholar 

  • Van Aalst, M. K. (2005). Dynamics and transport in the stratosphere: simulations with a general circulation model. Dissertation: University of Utrecht, The Netherlands.

    Google Scholar 

  • Wernli, H., & Bourqui, M. (2002). A Lagrangian “1-year climatology” of (deep) cross-tropopause exchange in the extratropical northern hemisphere. Journal of Geophysical Research, 107, D2, 4021, doi: 10.1029/2001JD000812.

    Article  Google Scholar 

  • WMO (World Meteorological Organization) (2007). Scientific Assessment of Ozone Depletion: 2006. Global Ozone Research and Monitoring Project, Report No. 50. WMO Geneva, Switzerland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Lelieveld, J. (2009). Stratosphere—Troposphere Interactions in a Chemistry-Climate Model. In: Zerefos, C., Contopoulos, G., Skalkeas, G. (eds) Twenty Years of Ozone Decline. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2469-5_24

Download citation

Publish with us

Policies and ethics