Skip to main content

Stratospheric Ozone Depletion and Tropospheric Chemistry

  • Conference paper
Twenty Years of Ozone Decline

Tropospheric chemistry is affected by stratospheric ozone reduction through the impact of enhanced solar UV-B radiation leading to enhanced levels of the key oxidizer in the troposphere, OH. Model results from the Oslo CTM2 have been analyzed to deduce the impact of changes in stratospheric ozone on tro-pospheric chemistry, in particular, changes in surface ozone. Three situations are analyzed: (a) A general study of the sensitivity of surface ozone to changes in column ozone changes under different atmospheric conditions (changes in composition), (b) a specific study of the impact during episodes of high ozone levels, and (c) a study of the impact during a period (1980–2000) of significant ozone depletion. In all cases it is found that tropospheric chemistry (OH,O3) is perturbated, but processes are nonlinear and the ozone perturbation is determined by the distribution of the ozone precursor NOx. Column ozone reduction could be both positive and negative. We find agreement with observations in the few cases where comparisons can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayers, G. P., Penkett, S. A., Gillet, R. W., Bandy, B., Galbally, I. E., Meyer, C. P., et al. (1992). Evidence for photochemical control of ozone concentrations in unpolluted marine air. Nature, 360, 446–449.

    Article  CAS  Google Scholar 

  • Berntsen, T., & Isaksen, I. S. A. (1999). Effects of lightning and convection on changes in tropospheric ozone due to NOx emissions from aircraft. Tellus, 51B, 766–788.

    CAS  Google Scholar 

  • Chandra, S., Ziemke, J. R., & Stewart, R. W. (1999). An 11-year solar cycle in tropospheric ozone from TOMS measurements. Geophysical Research Letters, 26(2), 185–188.

    Article  CAS  Google Scholar 

  • Crutzen, P. J., (1979). The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annual Review of Earth Planetary Science, 7, 443–472.

    Article  CAS  Google Scholar 

  • Fuglestvedt, J. S., Jonson, J. E., & Isaksen, I. S. A. (1994). Effects of reductions in stratospheric ozone on tropospheric chemistry. Tellus, 46, 172–192.

    Google Scholar 

  • Gauss, M., Myhre, G., Isaksen, I. S. A., Grewe, V., Pitari, G., Wild, O., et al. (2006). Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmospheric Chemistry and Physics, 6, 575–599.

    Article  CAS  Google Scholar 

  • Granier, C., Muller, J. F., Madronich, S., & Brasseur, G. P. (1996). Possible causes for the 1990–1993 decrease in the global tropospheric CO abundances: A three- dimensional study. Atmospheric Environonment, V30(10), 1673–1682.

    Article  Google Scholar 

  • Grini, A., Myhre, G., & Sundet, J. (2002). I. S. A. Isaksen, Modelling the annual cycle of sea salt in the global 3-D model Oslo CTM-2, concentration, fluxes and radiative impact. Journal of Climate, v15(13), 1717–1730.

    Article  Google Scholar 

  • Isaksen, I. S. A., Zerefos, C., Kourtidis, K., Meleti, C., Dalsøren, S. B., Sundet, J. K., et al. (2005). Tropospheric ozone changes at unpolluted and semi-polluted regions induced by stratospheric ozone changes. Journal of Geophysical. Research, V110, DO2302, doi: 10.1029/2004JD004618.

    Google Scholar 

  • Liu, S. C., McFarland, M., Kley, D., Zafiriou, O., & Hubert, B. (1983). Tropospheric NOx and O3 budgets in the equatorial Pacific. Journal of Geophysical Research, 88, 1349–1368.

    Article  Google Scholar 

  • Ridley, B. A., Madronich, S., Chatfield, R. B., Walega, J. G., Shetter, R. E., Carroll, M. A., et al. (1992). Measurements and model simulations of the photostationary state during the Mauna Loa Observatory Photochemistry Experiment: Implications for radical concentrations and ozone production and loss rates. Journal of Geophysical Research, 97(D7), 10375–10388.

    CAS  Google Scholar 

  • Schnell, R. C., Liu, S. C., Oltmans, S. J., Stone, R. S., Hofmann, D. J., Dutton, E. G., et al. (1991). Decrease of summer tropospheric ozone concentrations in Antarctica. Nature, 351, 726–729.

    Article  CAS  Google Scholar 

  • Solberg, S., Hov, Ø., Søvde, A., Isaksen, I. S. A., Coddeville, P., De Backer, H., et al. (2008). European surface ozone in the extreme summer 2003. Journal of Geophysical Research, 113, D07307, doi: 10.1029/2007JD009098.

    Google Scholar 

  • Solomon, K. R., Tang, X., Wilson, S. R., Zanis, P., & Bais, A. F. (2003). Changes in tropo-spheric composition and air quality due to stratospheric ozone depletion. Photochemical and Photobiological Science, 2, 62–67.

    Article  CAS  Google Scholar 

  • Sovde, O. A., Gauss, M., Smyshlyaev, S. P., & Isaksen, I. S. A. (2008). Evaluation of the chemical transport model Oslo CTM2 with focus on arctic winter ozone depletion. JGR, 113, D09304.

    Google Scholar 

  • Taalas, P., Damski, J., Kyroe, E., Ginzbourg, M., & Talamoni, G. (1997). Effect of stratospheric ozone variations on UV radiation and on tropospheric ozone at high latitudes. Journal of Geophysical Research, 102(D1), 1533–1539.

    Article  CAS  Google Scholar 

  • WMO (World Meteorological Organization). (1994). Scientific Assessment of Ozone Depletion: 1998; Global Ozone Research Monitoring Project Report No 37, Geneva, Switzerland, 1995.

    Google Scholar 

  • WMO (World Meteorological Organization). (1998). Scientific Assessment of Ozone Depletion: 1998; Global Ozone Research Monitoring Project Report No 44, Geneva, Switzerland, 1999.

    Google Scholar 

  • Zerefos, C. S. (2002). Long-term ozone and UV variations at Thessaloniki, Greece. Physics and Chemistry of the Earth, 27, 455–460.

    Google Scholar 

  • Zerefos, C. S., Balis, D. S., Bais, A. F., Gillotay, D., Simon, P. C., Mayer, B., et al. (1997). Variability of UV-B at four Stations in Europe. Geophysical Research Letters, 24(11), 1363–1366.

    Article  Google Scholar 

  • Ziemke, J. R., Chandra, S., Herman, J., & Varotsos, C. (2000). Erythemally weighted UV trends over Northern latitudes derived from Nimbus-7 TOMS measurements. Journal of Geophysical Research, 105(D6), 7373–7382.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Isaksen, I.S.A., Rognerud, B., Dalsøren, S., Søvde, A. (2009). Stratospheric Ozone Depletion and Tropospheric Chemistry. In: Zerefos, C., Contopoulos, G., Skalkeas, G. (eds) Twenty Years of Ozone Decline. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2469-5_21

Download citation

Publish with us

Policies and ethics