Skip to main content

Estimating When the Antarctic Ozone Hole will Recover

  • Conference paper
Twenty Years of Ozone Decline

The Antarctic ozone hole develops during the Austral winter and reaches its deepest levels by early spring (late September to early October). The severity of the hole has been assessed from satellites by calculating the average aerial coverage of depletion during the September—October period. Profile information shows that ozone is completely destroyed in the 14–21 km layer by early October. This ozone is mainly destroyed by halogen (chlorine and bromine) catalytic cycles, and these losses are modulated by temperature variations.

Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should considerably decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We estimate that the ozone hole will begin to show first signs of area decrease in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. Estimates of the ozone hole's recovery from models reveal important uncertainties in recovery as a result of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J., Russell, J. M. III, Solomon, S., & Deaver, L. E. (2000). Halogen Occultation Experiment confirmation of stratospheric chlorine decreases in accordance with the Montreal Protocol. Journal of Geophysical Research, 105(D4), 4483–4490.

    Article  CAS  Google Scholar 

  • Austin, J., & Wilson, R. J. (2006). Ensemble simulations of the decline and recovery of stratospheric ozone. Journal of Geophysical Research, 111, D16314, doi: 10.1029/2005JD006907.

    Google Scholar 

  • Bodeker, G. E., & Waugh, D. W. (Lead Authors), et al. (2007). The ozone layer in the 21st Century, Chapter 6 in Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project—Report No. 50, 572 pp., World Meteorological Organization, Geneva, Switzerland.

    Google Scholar 

  • Butchart, N., Scaife, A. A., Bourqui, M., de Grandpré, J., Hare, S. H. E., Kettleborough, J., et al. (2006). Simulations of anthropogenic change in the strength of the Brewer—Dobson circulation. Climate Dynamics, 27, 727–741, doi: 10.1007/s00382-006-0162-4.

    Article  Google Scholar 

  • Clerbaux, C., & Cunnold, D. (Lead Authors), et al. (2007). Long-lived compounds, Chapter 1 in Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project—Report No. 50, 63 pp., World Meteorological Organization, Geneva, Switzerland.

    Google Scholar 

  • Daniel, J. S., Solomon, S., & Albritton, D. L. (1995). On the evaluation of halocarbon radiative forcing and global warming potentials. Journal of Geophysical Research, 100(D1), 1271–1285.

    Article  CAS  Google Scholar 

  • Daniel, J. S., & Velders, G. J. M. (Lead Authors), et al. (2007). Halocarbon scenarios, ozone depletion potentials, and global warming potentials, Chapter 8 in Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project—Report No. 50, 572 pp., World Meteorological Organization, Geneva, Switzerland.

    Google Scholar 

  • Douglass, A. R., Stolarski, R. S. Schoeberl, M. R. Jackman, C. H. Gupta, M. L. Newman, P. A. Nielsen, J. E., & Fleming, E. L. (2008). Relationship of loss, mean age of air and the distribution of CFCs to stratospheric circulation and implications for atmospheric lifetimes. J. Geophys.Res., 113, D14309, doi: 10.1029/2007JD009575.

    Google Scholar 

  • Eyring, V., et al. (2007). Multimodel projections of stratospheric ozone in the 21st century. Journal of Geophysical Research, 112, D16303, doi: 10.1029/2006JD008332.

    Google Scholar 

  • Farman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of total ozone in Antarcticam reveal seasonal ClOx/NOx interaction. Nature, 315, 207.

    Article  CAS  Google Scholar 

  • Froidevaux, L., et al. (2006). Temporal decrease in upper atmospheric chlorine. Geophysical Research Letters, 33, L23812, doi: 10.1029/2006GL027600.

    Google Scholar 

  • Gupta, M. L., Turco, R. P., Mechoso, C. R., & Spahr, J. A. (2001). On-line simulations of passive chemical tracers in the University of California, Los Angeles. atmospheric general circulation model. 1. CFC-11 and CFC-12, Journal of Geophysical Research, 106(D12), 12,401–12,417.

    Article  CAS  Google Scholar 

  • Hofmann, D. J., Oltmans, S. J., Harris, J. M., Johnson, B. J., & Lathrop, J. A. (1997). Ten years of ozonesonde measurements at the south pole: Implications for recovery of springtime Antarctic ozone. Journal Geophysical Research, 102(D7), 8931–8943.

    Article  CAS  Google Scholar 

  • Liang, Q., Stolarski, R. S. Douglass, A. R. Newman, P. A., & Nielsen, J. E. (2008), Evaluation of emissions and transport of CFCs using surface observations and their seasonal cycles and the GEOS CCM simulation with emissions-based forcing. J. Geophys. Res., 113, D14302, doi: 10.1029/2007JD009617.

    Google Scholar 

  • Montzka, S. A., & Fraser, P. (Lead Authors), et al. (2003). Controlled substances and other source gases, Chapter 1 in Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project—Report No. 47, 83 pp., World Meteorological Organization, Geneva, Switzerland.

    Google Scholar 

  • Newman, P. A., Rex, M. (Lead Authors), et al. (2003). Polar stratospheric ozone: Past and future, Chapter 3 in Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project—Report No. 47, 104 pp., World Meteorological Organization, Geneva, Switzerland.

    Google Scholar 

  • Newman, P. A., Kawa, S. R., & Nash, E. R. (2004). On the size of the Antarctic ozone hole. Geophysical Research Letters, 31, L21104, doi: 10.1029/2004GL020596.

    Google Scholar 

  • Newman, P. A., Nash, E. R., Kawa, S. R., Montzka, S. A., & Schauffler, S. M. (2006). When will the Antarctic ozone hole recover? Geophysical Research Letters, 33, L12814, doi: 10.1029/2005GL025232.

    Google Scholar 

  • Newman, P. A., Daniel, J. S., Waugh, D. W., & Nash, E. R. (2007). A new formulation of equivalent effective stratospheric chlorine (EESC). Atmospheric Chemistry and Physics, 7, 4537–4552.

    Article  CAS  Google Scholar 

  • Pawson, S., Stolarski, R. S., Douglass, A. R., Newman, P. A., Nielsen, J. E., Frith, S. M., Gupta, M. L. (2008). Goddard Earth Observing System chemistry-climate model simulations of stratospheric ozone-temperature coupling between 1950 and 2005. J. Geophys. Res., 113, D12103, doi: 10.1029/2007JD009511.

    Google Scholar 

  • Prather, M. J., & Watson, R. (1990). Stratospheric ozone depletion and future levels of atmospheric chlorine and bromine. Nature, 344, 729–734.

    Article  CAS  Google Scholar 

  • Shindell, D. T., Rind, D., & Lonergan, P. (1998). Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature, 392, 589–592.

    Article  CAS  Google Scholar 

  • WMO (World Meteorological Organization) (2003). Scientific Assessment of Ozone Depletion: 2002, Global Ozone Research and Monitoring Project—Report No. 47, Geneva, Switzerland.

    Google Scholar 

  • WMO (World Meteorological Organization) (2007). Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project—Report No. 50, Geneva, Switzerland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Newman, P.A., Nash, E.R., Douglass, A.R., Nielsen, J.E., Stolarski, R.S. (2009). Estimating When the Antarctic Ozone Hole will Recover. In: Zerefos, C., Contopoulos, G., Skalkeas, G. (eds) Twenty Years of Ozone Decline. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2469-5_14

Download citation

Publish with us

Policies and ethics