Skip to main content

Abstract

Chemically, cocaine is a [1R, 2R, 3S, 5S]-3-(benzoyloxy)-8-methyl-8-azabicyclo-­[3.2.1] octane-2-carboxylic acid methyl ester, or the methyl ester of benzoylecgonine. It appears as cocaine base (CAS-50-36-2) and the hydrochloride salt (CAS-53-21-4). There the three components of the molecule, the dotted lines around each component in the drawing mark important parts: ecgonine, methyl alcohol, and benzoic acid (Fig. 30).

Cocaine is still classified as a narcotic by the federal government. It is found in Schedule II of the Controlled Substances Act of 1970, and is subject to all the restrictions placed on opioids also found in Schedule II. Cocaine is at present only approved for topical administration. Its primary use is in ENT surgery, particularly of the nose, pharynx, etc. The esters and derivatives of ecgonine, which are convertible to ecgonine and cocaine, are also controlled according to that Convention. Coca leaf is separately listed in Schedule I and is defined by Article 1, Paragraph 1, as: “The leaf of the coca bush, except a leaf from which all ecgonine, cocaine and any other ecgonine alkaloids have been removed”. Cocaine is part of the alkaloids contained in the leaves (folia coca) of the coca bush Erythroxylon coca. It is a white, crystal-like powder, and when in the form of crack, cocaine base usually occurs as small (100–200 mg) lumps (‘rocks’).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart DJ, Inaba T, Lucassen M, Kalow W. Cocaine metabolism: cocaine and norcocaine hydrolysis by liver and serum esterases. Clin Pharmacol Ther. 1979;25:464–8.

    PubMed  CAS  Google Scholar 

  2. Zhang JY, Foltz RL. Cocaine metabolism in man: identification of four previously unreported cocaine metabolites in human urine. J Anal Toxicol. 1990;14:201–5.

    PubMed  CAS  Google Scholar 

  3. Warner A, Norman AB. Mechanism pf cocain hydrolysis and metabolism in vitro and in vivo: a clarification. Ther Drug Monit. 2000;22:266–70.

    Article  PubMed  CAS  Google Scholar 

  4. Matsubara K, Kagawa M, Fukui Y. In vivo and in vitro studies on cocaine metabolism: ecgonine methyl ester as a major metabolite of cocaine. Forensic Sci Int. 1984;26:169–80.

    Article  PubMed  CAS  Google Scholar 

  5. Cone EJ, Tsadik A, Oyler J, Darwin WD. Cocaine metabolism and urinary excretion after different routes of administration. Ther Drug Monit. 1098;20:556–60.

    Article  Google Scholar 

  6. Harris DS, Everhart ET, Mendelson J, Jones RT. The pharmacology of cocaethylene in humans following cocaine and ethanol administration. Drug Alcohol Depend. 2003;72:169–82.

    Article  PubMed  CAS  Google Scholar 

  7. Wilson LD, Henning RJ, Suttheimer C, Lavins E, Balray E, Earl S. Cocaetylene cause dose dependent reductions in cardiac function in anesthetized dogs. J Cardiovasc Pharmacol. 1995;26:965–73.

    Article  PubMed  CAS  Google Scholar 

  8. Xu Y, Crumb WJ, Clarkson CW. Cocaethylene, a metabolite of cocaine and ethanol, is a potent blocker of cardiac sodium channels. J Pharmacol Expt Ther. 1994;271:319–25.

    CAS  Google Scholar 

  9. Cami J, Farré M, González ML, Segura J, de la Torre R. Cocaine metabolism in humans after use of alcohol. Clinical and research implications. Recent Dev Alcohol. 1998;14:437–55.

    Article  PubMed  CAS  Google Scholar 

  10. Clapp L, Martin B, Beresford TP. Sublingual cocaine – Novel recurrence of an ancient practice. Clin Neuropharmacol. 2004;27:93–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enno Freye MD, PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Freye, E. (2009). Pharmacology of Cocaine. In: Pharmacology and Abuse of Cocaine, Amphetamines, Ecstasy and Related Designer Drugs. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2448-0_8

Download citation

Publish with us

Policies and ethics