Skip to main content

Some Atmospheric Thermal Convection Problems

  • Chapter
Book cover Convection in Fluids

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 90))

  • 1701 Accesses

The thermal convection problems considered in this chapter are very different from the scales in time and space of the phenomena studied in the preceding chapters. As this is well and pertinently discussed in the paper by Velarde and Normand [1], published in July 1980 in Scientific American: In the Earth's atmosphere convection is observed at several scales of length. The temperature gradient between the Tropics and the poles drives a global circulation, which can be decomposed into at least three large convective cells in each hemisphere. Distortions of these patterns caused by the rotation of the Earth give rise to the trade winds of the Tropics and the prevailing westerlies of the temperate zones.

Local heating of the atmosphere near the Earth's surface gives rise to smaller-scale convective flows, including those of most storms. Cumulus clouds, which form when warm air rises and cools and thereby becomes supersaturated with moisture, often mark the convective overturning of the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.G. Velarde and Ch. Normand, Convection. Scientific American 243(1), 92–108, 1980.

    Google Scholar 

  2. L.N. Gutman, Introduction to the Nonlinear Theory of Mesoscale Meteorological Processes. Israel Program for Scientific Translations, Jerusalem, 1972 [translated from Russian].

    Google Scholar 

  3. K.A. Emanuel, Amospheric Convection. Oxford University Press, New York, 1994.

    Google Scholar 

  4. R.Kh. Zeytounian, Topics in Hyposonic Flow Theory. Lecture Notes in Physics, Vol. 672, Springer-Verlag, Berlin/Heidelberg, 2006.

    Google Scholar 

  5. R.Kh. Zeytounian, Meteorological Fluid Mechanics. Lecture Notes in Physics, Vol. m5, Springer-Verlag, Heidelberg, 1991.

    Google Scholar 

  6. R.Kh. Zeytounian, On the foundations of the Boussinesq approximation applicable to atmospheric motions. Izvestiya ‘Atmospheric and Oceanic Physics39, Suppl. 1, S1–S14, 2003.

    MathSciNet  Google Scholar 

  7. I.A. Kibel, An Introduction to the Hydrodynamical Methods of Short Period Weather Forecasting. Macmillan, London, 1963 [translated from Russian].

    Google Scholar 

  8. B.S. Dandapat and P.C. Ray, Int. J. Non-Linear Mech. 28(5), 489–501, 1993.

    Article  MATH  Google Scholar 

  9. A.Kh. Khrgian, Physics of the Atmosphere. Gos-Tekh-Izdat, Moscow, 1953.

    Google Scholar 

  10. F.T. Smith, J. Fluid Mech. 57(4), 803–824, 1973.

    Article  MATH  Google Scholar 

  11. F.T. Smith, R.I. Sykes and P.W.M. Brighton, J. Fluid Mech. 83(1), 163–176, 1977.

    Article  MATH  Google Scholar 

  12. R.I. Sykes, Proc. Roy. Soc. London A361, 225–243, 1978.

    Google Scholar 

  13. R.Kh. Zeytounian, Les modèles asymptotiques de la mécanique des fluides, II. Lecture Notes in Physics, Vol. 276, Springer-Verlag, Berlin/Heidelberg, 1987.

    MATH  Google Scholar 

  14. F.T. Smith, P.W.M. Brighton, P.S. Jackson and J.C.R. Hunt, J. Fluid Mech. 113, 123, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  15. R.Kh. Zeytounian, Asymptotic Modelling of Fluid Flow Phenomena. Kluwer Academic Publishers, Dordrecht, 2002.

    MATH  Google Scholar 

  16. H. Schlichting, Berechnung ebener periodisher Grenzschichtströmungen. Phys. Z., 33(8), 337, 1932.

    Google Scholar 

  17. R.Kh. Zeytounian, Convection naturelle périodique au-dessus d'une surface courbe. J. Méc. (France) 7(2), 231–247, 1968.

    MATH  MathSciNet  Google Scholar 

  18. J.M. Noe, Sur une theorie asymptotique de la convection naturelle. Thdèse de Doctorat de 3dème Cycle, Université des Sciences et Techniques de Lille I, No. d'ordre 884, March 1981.

    Google Scholar 

  19. N. Riley, Oscillating viscous flows. Mathematika 12, 161–175, 1965.

    Article  MathSciNet  Google Scholar 

  20. J.T. Stuart, Double boundary layers in oscillatory viscous flow. J. Fluid Mech. 24(4), 673–687, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  21. H.E. Fettis, On the integration of a class of differential equations occuring in boundary-layer and other hydrodynamic problems. In Proc. 4th Mid West Conference on Fluid Mechanichs, Purdue University, pp. 93–114, 1955.

    Google Scholar 

  22. J.E. Simpson, Sea Breeze and Local Winds. Cambridge University Press, 1994.

    Google Scholar 

  23. J.E. Walsh, Sea breeze theory and applications. J. Atmos. Sci. 31, 2012–2026, 1974.

    Article  Google Scholar 

  24. H. Niino, On the linear theory of land and sea breeze circulation. J. Meteorol. Soc. Japan 65, 901–921, 1987.

    Google Scholar 

  25. R.A. Pielke, A comparaison of three-dimensional and two-dimensional numerical prediction of sea breezes. J. Atmos. Sci. 31, 1577–1585, 1974.

    Article  Google Scholar 

  26. Y. Maher and R.A. Pielke, The effects of topography on sea and land breezes in a two-dimensional numerical model. Mon. Weather Rev. 105, 1151–1162, 1977.

    Article  Google Scholar 

  27. J.R. Garrat and W.L. Physick, Beitr. Phys. Atmos. 59, 282–300, 1986.

    Google Scholar 

  28. J.R. Garrat and W.L. Physick, Beitr. Phys. Atmos. 60, 88–102, 1987.

    Google Scholar 

  29. Z. Xian and R.A. Pielke, J. Appl. Meteorol. 30, 1280–1304, 1991.

    Article  Google Scholar 

  30. R.A. Pielke, Mesoscale Meteorological Modeling. Academic Press, Orlando, 1984.

    Google Scholar 

  31. R.Kh. Zeytounian, Étude Hydrodynamique des Phénomdènes Mésométéorologiques. L'école de la Météorologie, Direction de la Météorologie Nationale, Paris, 1968.

    Google Scholar 

  32. F.J. Robinson, S.C. Sherwood and Y. Li, J. Atmos. Sci. 65, 276–286, January 2008.

    Article  Google Scholar 

  33. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford, 1961.

    MATH  Google Scholar 

  34. P.-A. Bois and A. Kubicki, A theoretical model for double diffusive phenomena in cloudy convection. Ann. Geophys. 21, 2201–2218, 2003.

    Google Scholar 

  35. N.E. Veremei, Yu. Dovgalyuk and E.N. Stankova, Izvestiya, Atmospheric and Oceanic Physics 43(6), 731–744, 2007.

    Article  Google Scholar 

  36. W.P. Jones and B.E. Launder, Int. J. Heat Transfer 16, 1119–1130, 1973.

    Article  Google Scholar 

  37. E.N. Stankova, In Proc. Conference of Young Scientists and Specialists of the Voeikov Main Geophys. Observ., Leningrad, pp. 47–53, 1990 [in Russian].

    Google Scholar 

  38. R.Kh. Zeytounian, Theory and Applications of Viscous Fluid Flows. Springer-Verlag, Berlin/Heidelberg, 2004.

    MATH  Google Scholar 

  39. R.S. Scorer, Environmental Aerodynamics. Wiley, 1978.

    Google Scholar 

  40. J.R.C. Hunt, Environmental Fluid Mechanics. IUTAM Conference, pp. 13–31, 1980.

    Google Scholar 

  41. G.S. Golitsyn, Simple theoretical and experimental study of convection with some geophysical applications and analogies. J. Fluid Mech. 95(3), 567–608, 1979.

    Article  Google Scholar 

  42. H.T. Rossby, J. Fluid Mech. 36(2), 1970.

    Google Scholar 

  43. G.S. Kirichenko and P. Poritskiy, Thermocapillary analogue of Rossby waves. Atmospheric and Oceanic Physis 31(5), 608–610, April 1996 [English translation].

    Google Scholar 

  44. Zhang Meigen, Linear model of air flow distortion by the effect of breeze. Atmospheric and Oceanic Physis 31(6), 787–791, June 1996 [English translation].

    Google Scholar 

  45. R.Kh. Zeytounian, Sur une formulation rigoureuse du probldème de la convection libre atmosphérique. J. Engng. Math. 11(3), 241–247, July 1977.

    Article  MATH  MathSciNet  Google Scholar 

  46. R.Kh. Zeytounian and A. Mahdjoub, Prise en compte d'une sous-couche de dissipation dans les phénomdènes de convection libre. ZAMP 40, 931–939, November 1989.

    Article  MATH  MathSciNet  Google Scholar 

  47. P.A. Bois, Effets dissipatifs dans les écoulements atmosphériques. Deuxidème partie: In-stabilité linéaire convective dans l'atmosphdère. J. Méc. (France) 18(4), 633–660, 1979.

    MATH  MathSciNet  Google Scholar 

  48. M.J. Manton, Convection in the lower atmosphere. Austr. J. Phys. 27, 495–509, 1975.

    Google Scholar 

  49. R.Kh. Zeytounian, Hydrodynamical study of the initial stage of the development of local winds. Doctoral Thesis, Trudy of the World Meteo Centre, Vol. 3, pp. 19–74, 1964 [in Russian].

    Google Scholar 

  50. O.A. Oleinik, PMM 33(3), 441, 1969 [in Russian].

    MathSciNet  Google Scholar 

  51. A.S. Monin, Fundamentals of Geophysical Fluid Dynamics. GidrometeoIzdat, Leningrad, 1988 [in Russian, but an English translation is available].

    Google Scholar 

  52. B.M. Boubnov and G.S. Golitsyn, Convection in Rotating Fluids. Fluid Mechanics and Its Applications, Vol. 29, Kluwer Academic Publishers, Dordrecht, 1995.

    MATH  Google Scholar 

  53. P.A. Bois, Asymptotic theory of Boussinesq waves in the atmosphere. In: Lecture in CISM Course, Udine (Italy), October 1983. Publ. IRMA, Université de Lille-I, Vol. VI, Fasc. 4, No. 2, pp. II.1 to II.89, 1984

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this chapter

Cite this chapter

(2009). Some Atmospheric Thermal Convection Problems. In: Convection in Fluids. Fluid Mechanics and its Applications, vol 90. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2433-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2433-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2432-9

  • Online ISBN: 978-90-481-2433-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics