Skip to main content

The Bénard (1900, 1901) Convection Problem, Heated from below

  • Chapter

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 90))

In this chapter, we take into account the influence of a deformable free surface and, as a consequence, we revisit the mathematical formulation of the classical problem describing the Bénard instability of a horizontal layer of fluid, heated from below, and bounded by an upper deformable free surface. Because the deformation of the free surface, subject to a temperature-dependent surface tension, is taken into account in the full Bénard convection problem, heated from below, we have not specified this convection as being a ‘thermal convection’.

Indeed, in the full starting Bénard problem, heated from below, when we take into account the influence of a deformable free surface, subject to a temperature-dependent surface tension, the fluid being an expansible liquid, it is necessary to take into account, simultaneously, four main effects. Namely:

  1. (a)

    the conduction adverse temperature gradient (Bénard) effect in motionless steady-state conduction temperature

  2. (b)

    the temperature-dependent surface tension (Marangoni) effect

  3. (c)

    the heat flux across the upper, free surface (Biot) effect

  4. (d)

    the buoyancy (Archimedean—Boussinesq) effect arising from the volume (gravity) forces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bénard, Les tourbillons cellulaires dans une nappe liquide. Revue Générale des Sciences Pures et Appliquées 11, 1261–1271 and 1309–1328, 1900. See also: Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Annales de Chimie et de Physique 23, 62–144, 1901.

    Google Scholar 

  2. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford, 1961. See also: Dover Publications, New York, 1981.

    MATH  Google Scholar 

  3. E.L. Koschmieder, Bénard Cells and Taylor Vortices. Cambridge University Press, Cambridge, 1993.

    MATH  Google Scholar 

  4. C. Marangoni, Sull'espansione delle gocce di un liquido gallegianti sulla superficie di altro liquido. Pavia: Tipografia dei fratelli Fusi, 1965 and Ann. Phys. Chem. (Poggendotff) 143, 337–354, 1871.

    Google Scholar 

  5. J. Plateau, Statique Experimentale et Theorique des Liquides Soumis aux Seules Forces Moléculaires, Vol. 1. Gauthier-Villars, Paris, 1873.

    Google Scholar 

  6. R.Kh. Zeytounian, The Bénard–Marangoni thermocapillary-instability problem. Physics-Uspekhi 41(3), 241–267, March 1998 [English edition].

    Article  MathSciNet  Google Scholar 

  7. D.A. Nield, Surface tension and buoyancy effects in cellular convection. J. Fluid Mech. 19, 341–352, 1964.

    Article  MATH  MathSciNet  Google Scholar 

  8. M.J. Block, Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature 178, 650–651, 1956.

    Article  Google Scholar 

  9. R.Kh. Zeytounian, The Bénard—Marangoni thermocapillary instability problem: On the role of the buoyancy. Int. J. Engng. Sci. 35(5), 455–466, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. M.G. Velarde and R.Kh. Zeytounian (Eds.), Interfacial Phenomena and the Marangoni Effect. CISM Courses and Lectures, No. 428, Udine. Springer-Verlag, Wien/New York, 2002.

    MATH  Google Scholar 

  11. S.H. Davis, Thermocapillary instabilities. Ann. Rev. Fluid Mech. 19, 403–435, 1987.

    Article  MATH  Google Scholar 

  12. J.R.A. Pearson, On convection cells induced by surface tension. J. Fluid Mech. 4, 489– 500, 1958.

    Article  MATH  Google Scholar 

  13. S.J. Vanhook et al., Long-wavelength instability in surface-tension-driven Bénard convection. Phys. Rev. Lett. 75, 4397, 1995.

    Article  Google Scholar 

  14. D.D. Joseph, Stability of Fluid Motions, Vol. II. Springer, Heidelberg, 1976.

    Google Scholar 

  15. P.M. Parmentier, V.C. Regnier and G. Lebond, Nonlinear analysis of coupled gravitational and capillary thermoconvection in thin fluid layers. Phys. Rev. E 54(1), 411–423, 1996.

    Article  Google Scholar 

  16. M. Takashima, J. Phys. Soc. Japan 50(8), 2745–2750 and 2751–2756, 1980.

    Google Scholar 

  17. R.Kh. Zeytounian, Int. J. Engng. Sci. 27(11), 1361, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  18. M.P. Ida and M.J. Miksis, The dynamics of thin films. I. General theory; II. Applications. SIAM J. Appl. Math. 58(2), 456–473 (I) and 474–500 (II), 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. D.J. Needham and J.H. Merkin, J. Fluid Mech. 184, 357–379, 1987.

    Article  MATH  Google Scholar 

  20. Ch. Bailly, Modélisation asymptotique et numérique de l'écoulement dû à des disques en rotation. Thesis, Université de Lille I, Villeneuve d'Ascq, No. 1512, 160 pp., 1995.

    Google Scholar 

  21. D.D. Joseph and Yu.R. Renardy, Fundamentals of Two-Fluid Dynamics. Part I: Mathematical Theory and Applications. Springer-Verlag, 1993.

    Google Scholar 

  22. C. Ruyer-Quil, B. Scheid, S. Kalliadasis, M.G. Velarde and R.Kh. Zeytounian, Thermocapillary long-waves in a liquid film flow. Part 1: Low-dimensional formulation. J. Fluid Mech. 538, 199–222, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Oron, S.H. Davis and S.G. Bankoff, Long-scale evolution of thin liquid film. Rev. Modern Phys. 69(3), 931–980, July 1997.

    Article  Google Scholar 

  24. J.K. Platten and J.C. Legros, Convection in Liquids, 1st edn. Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  25. B. Scheid, C. Ruyer-Quil, S. Kalliadasis, M.G. Velarde and R.Kh. Zeytounian, Thermocapillary long-waves in a liquid film flow. Part 2: Linear stability and nonlinear waves. J. Fluid Mech. 538, 223–244, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Dowson, History of Tribology. Longmans, Green, London/New York, 1979.

    Google Scholar 

  27. H. Schlichting, Boundary-Layer Theory. McGraw-Hill, New York, 1968.

    Google Scholar 

  28. C.-S. Yih, Stability of parallel laminar flow down an inclined plane. Phys. Fluids 6, 321– 333, 1963.

    Article  MATH  Google Scholar 

  29. T.B. Benjamin, Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554–574, 1957.

    Article  MathSciNet  Google Scholar 

  30. S. Ndoumbe, F. Lusseyran, B. Izrar, Contribution to the modeling of a liquid film flowing down inside a vertical circular tube. C.R. Mecanique 331, 173–178, 2003.

    Article  MATH  Google Scholar 

  31. C.M. Gramlich, S. Kalliadasis, G.M. Homsy and C. Messer, Optimal leveling of flow over one-dimensional topography by Marangoni stresses. Phys. Fluids 14(6), 1841– 1850, June 2002.

    Article  Google Scholar 

  32. L.E. Stillwagon and R.G. Larson, Leveling of thin film over uneven substrates during spin coating. Phys. Fluids A2, 1937, 1990.

    Google Scholar 

  33. S. Kalliadasis, C. Bielarz, and G.M. Homsy, Steady free-surface thin film flows over topography. Phys. Fluids 12, 1889, 2000.

    Article  MathSciNet  Google Scholar 

  34. L. Limat, Instability of a liquid hanging below a solid ceiling: influence of layer thickness. C.R. Acad. Sci. Paris, Ser. II 317, 563–568, 1993.

    MATH  Google Scholar 

  35. D.H. Sharp, Physica D 12, 3–18, 1984.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this chapter

Cite this chapter

(2009). The Bénard (1900, 1901) Convection Problem, Heated from below. In: Convection in Fluids. Fluid Mechanics and its Applications, vol 90. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2433-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2433-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2432-9

  • Online ISBN: 978-90-481-2433-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics