Skip to main content

Tools for Studying Biological Marine Ecosystem Interactions—Natural and Artificial Tags

  • Chapter
  • First Online:
Ecological Connectivity among Tropical Coastal Ecosystems

Abstract

Determining connectivity of organisms is difficult especially for early life history stages (larvae and juveniles). Fortunately, a variety of natural and artificial tags, some of which date back to the 1600’s, have been developed to help address the issues of movement. Over the years a vast literature on tagging has emerged, of which I provide an updated review. In this chapter, I discuss five broad areas of tagging (external tags, external marks, internal tags, telemetry, and natural tags) and provide additional information on genetic and chemical methods. For each method I highlight their advantages and disadvantages, and provide examples, where possible, of connectivity among tropical coastal ecosystems. Advances in many of the methodologies are expected to continue, and future studies should consider combining more than one approach especially where natural tags are utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almany GR, Berumen ML, Thorrold SR et al (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316:742–744

    Article  CAS  Google Scholar 

  • Anastasia JR, Morgan SG, Fisher NS (1998) Tagging crustacean larvae: assimilation and retention of trace elements. Limnol Oceanogr 43:362–368

    Article  CAS  Google Scholar 

  • Arnold G, Dewar H (2001) Archival and pop-up satellite tagging of Atlantic bluefin tuna. In: Sibert JR, Nielsen J (eds) Electronic tagging and tracking in marine fisheries. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Augley J, Huxham M, Fernandes TF et al (2007) Carbon stable isotopes in estuarine sediments and their utility as migration markers for nursery studies in the Firth of Forth and Forth Estuary, Scotland. Estuar Coast Shelf Sci 72:648–656

    Article  CAS  Google Scholar 

  • Barnes C, Jennings S (2007) Effect of temperature, ration, body size and age on sulphur isotope fractionation in fish. Rapid Commun Mass Spectrom 21:1461–1467

    Article  CAS  Google Scholar 

  • Bath GE, Thorrold SR, Jones CM et al (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 64:1705–1714

    Article  CAS  Google Scholar 

  • Beck MW, Heck KL, Able KW et al (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51:633–641

    Article  Google Scholar 

  • Becker BJ, Fodrie FJ, McMillan PA et al (2005) Spatial and temporal variation in trace elemental fingerprints of mytilid mussel shells: a precursor to invertebrate larval tracking. Limnol Oceanogr 50:48–61

    Article  CAS  Google Scholar 

  • Becker BJ, Levin LA, Fodrie FJ et al (2007) Complex larval connectivity patterns among marine invertebrate populations. Proc Natl Acad Sci USA 104:3267–3272

    Article  CAS  Google Scholar 

  • Beets J, Muehlstein L, Haught K et al (2003) Habitat connectivity in coastal environments: patterns and movements of Caribbean coral reef fishes with emphasis on bluestriped grunt, Haemulon sciurus. Gulf Caribb Res 14:29–42

    Google Scholar 

  • Bergenius MAJ, Mapstone BD, Begg GA et al (2005) The use of otolith chemistry to determine stock structure of three epinepheline serranid coral reef fishes on the Great Barrier Reef, Australia. Fish Res 72:253–270

    Article  Google Scholar 

  • Beukers JS, Jones GP, Buckley RM (1995) Use of implant microtags for studies on populations of small reef fish. Mar Ecol Prog Ser 125:61–66

    Article  Google Scholar 

  • Brazeau DA, Sammarco PW, Gleason DF (2005) A multi-locus genetic assignment technique to assess sources of Agaricia agaricites larvae on coral reefs. Mar Biol 147:1141–1148

    Article  CAS  Google Scholar 

  • Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Mar Biol 144:779–786

    Article  CAS  Google Scholar 

  • Brown JA (2006) Using the chemical composition of otoliths to evaluate the nursery role of estuaries for English sole Pleuronectes vetulus populations. Mar Ecol Prog Ser 306:269–281

    Article  Google Scholar 

  • Buckley RM, West JE, Doty DC (1994) Internal microtag systems for marking juvenile reef fishes. Bull Mar Sci 55:848–857

    Google Scholar 

  • Burke NC (1995) Nocturnal foraging habitats of French and bluestriped grunts, Haemulon flavolineatum and H. sciurus, at Tobacco Caye, Belize. Environ Biol Fish 42:365–374

    Article  Google Scholar 

  • Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297

    Article  CAS  Google Scholar 

  • Carmen MA, Ablan A (2006) Genetics and the study of fisheries connectivity in Asian developing countries. Fish Res 78:158–168

    Article  Google Scholar 

  • Chittaro PM, Fryer BJ, Sale R (2004) Discrimination of French grunts (Haemulon flavolineatum Desmarest, 1823) from mangrove and coral reef habitats using otolith microchemistry. J Exp Mar Biol Ecol 308:169–183

    Article  Google Scholar 

  • Chittaro PM, Hogan JD, Gagnon J et al (2006a) In situ experiment of ontogenetic variability in the otolith chemistry of Stegastes partitus. Mar Biol 149:1227–1235

    Article  CAS  Google Scholar 

  • Chittaro PM, Usseglio P, Fryer BJ et al (2006b) Spatial variation in otolith chemistry of Lutjanus apodus at Turneffe Atoll, Belize. Estuar Coast Shelf Sci 67:673–680

    Article  Google Scholar 

  • Cocheret de la Morinière E, Pollux BJA, Nagelkerken I et al (2003) Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar Ecol Prog Ser 246:279–289

    Article  Google Scholar 

  • Connell SD, Jones GP (1991) The influence of habitat complexity on postrecruitment processes in a temperate reef fish population. J Exp Mar Biol Ecol 151:271–294

    Article  Google Scholar 

  • Costantini F, Fauvelot C, Abbiati M (2007) Fine-scale genetic structuring in Corallium rubrum: evidence of inbreeding and limited effective larval dispersal. Mar Ecol Prog Ser 340:109–119

    Article  CAS  Google Scholar 

  • Courtney DL, Mortensen DG, Orsi JA et al (2000) Origin of juvenile Pacific salmon recovered from coastal southeastern Alaska identified by otolith thermal marks and coded wire tags. Fish Res 46:267–278

    Article  Google Scholar 

  • Craig MT, Eble JA, Bowen BW et al (2007) High genetic connectivity across the Indian and Pacific Oceans in the reef fish Myripristis berndti (Holocentridae). Mar Ecol Prog Ser 334:245–254

    Article  CAS  Google Scholar 

  • Cribb TH, Anderson GR, Dove ADM (2000) Pomphorhynchus heronensis and restricted movement of Lutjanus carponotatus on the Great Barrier Reef. J Helminthol 74:53–56

    CAS  Google Scholar 

  • Criscione CD, Cooper B, Blouin MS (2006) Parasite genotypes identify source populations of migratory fish more accurately than fish genotypes. Ecology 87:823–828

    Article  Google Scholar 

  • Crook DA, Munro AR, Gillanders BM et al (2005) Review of existing and proposed methodologies for discriminating hatchery and wild-bred fish. Murray Darling Basin Commission, Native fish strategy project R5003

    Google Scholar 

  • Crook DA, O'Mahony D, Gillanders BM et al (2007) Production of external fluorescent marks on golden perch fingerlings through osmotic induction marking with alizarin red S. N Am J Fish Manage 27:670–675

    Article  Google Scholar 

  • Dahlgren CP, Kellison GT, Adams AJ et al (2006) Marine nurseries and effective juvenile habitats: concepts and applications. Mar Ecol Prog Ser 312:291–295

    Article  Google Scholar 

  • Das Mahapatra K, Gjerde B, Reddy P et al (2001) Tagging: on the use of passive integrated transponder (PIT) tags for the identification of fish. Aquac Res 32:47–50

    Article  Google Scholar 

  • Davies N, Villablanca FX, Roderick GK (1999) Determining the source of individuals: multilocus genotyping in nonequilibrium population genetics. Trends Ecol Evol 14:17–21

    Google Scholar 

  • Davis JLD, Young-Williams AC, Hines AH et al (2004) Comparing two types of internal tags in juvenile blue crabs. Fish Res 67:265–274

    Article  Google Scholar 

  • DiBacco C, Levin LA (2000) Development and application of elemental fingerprinting to track the dispersal of marine invertebrate larvae. Limnol Oceanogr 45:871–880

    Article  CAS  Google Scholar 

  • Dorenbosch M, Pollux BJA, Pustjens AZ et al (2006) Population structure of the Dory snapper, Lutjanus fulviflamma, in the western Indian Ocean revealed by means of AFLP fingerprinting. Hydrobiologia 568:43–53

    Article  CAS  Google Scholar 

  • Dorenbosch M, Verweij MC, Nagelkerken I et al (2004) Homing and daytime tidal movements of juvenile snappers (Lutjanidae) between shallow-water nursery habitats in Zanzibar, western Indian Ocean. Environ Biol Fish 70:203–209

    Article  Google Scholar 

  • Dufour V, Pierre C, Rancher J (1998) Stable isotopes in fish otoliths discriminate between lagoonal and oceanic residents of Taiaro Atoll (Tuamotu Archipelago, French Polynesia). Coral Reefs 17:23–28

    Article  Google Scholar 

  • Elsdon TE, Wells BK, Campana SE et al (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations, and inferences. Oceanogr Mar Biol: Annu Rev 46:297–330

    Article  Google Scholar 

  • Elsdon TS, Gillanders BM (2003a) Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Rev Fish Biol Fish 13:219–235

    Article  Google Scholar 

  • Elsdon TS, Gillanders BM (2003b) Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Rev Fish Biol Fish 260:263–272

    CAS  Google Scholar 

  • Elsdon TS, Gillanders BM (2005) Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Can J Fish Aquat Sci 62:1143–1152

    Article  CAS  Google Scholar 

  • Elsdon TS, Gillanders BM (2006) Identifying migratory contingents of fish by combining otolith Sr:Ca with temporal collections of ambient Sr:Ca concentrations. J Fish Biol 69:643–657

    Article  CAS  Google Scholar 

  • Ennevor BC (1994) Mass marking coho salmon, Oncorhynchus kisutch, fry with lanthanum and cerium. Fish Bull 92:471–473

    Google Scholar 

  • Ennevor BC, Beames RM (1993) Use of lanthanide elements to mass mark juvenile salmonids. Can J Fish Aquat Sci 50:1039–1044

    Article  Google Scholar 

  • Evans RD, Richner P, Outridge PM (1995) Micro-spatial variations in heavy metals in the teeth of walrus as determined by laser ablation ICP-MS: the potential for reconstructing a history of metal exposure. Arch Environ Contam Toxicol 28:55–60

    Article  CAS  Google Scholar 

  • Fallon SJ, White JC, McCulloch MT (2002) Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochim Cosmochim Acta 66:45–62

    Article  CAS  Google Scholar 

  • Fauvelot C, Lemaire C, Planes S et al (2007) Inferring gene flow in coral reef fishes from different molecular markers: which loci to trust? Heredity 99:331–339

    Article  CAS  Google Scholar 

  • Fauvelot C, Planes S (2002) Understanding origins of present day genetic structure in marine fish: biologically or historically driven patterns? Mar Biol 141:773–788

    Article  Google Scholar 

  • Fodrie FJ, Levin LA (2008) Linking juvenile habitat utilization to population dynamics of California halibut. Limnol Oceanogr 53:799–812

    Google Scholar 

  • Frederick JL (1997a) Evaluation of fluorescent elastomer injection as a method for marking small fish. Bull Mar Sci 61:399–408

    Google Scholar 

  • Frederick JL (1997b) Post-settlement movement of coral reef fishes and bias in survival estimates. Mar Ecol Prog Ser 150:65–74

    Article  Google Scholar 

  • Fry B (1981) Natural stable carbon isotope tag traces Texas shrimp migrations. Fish Bull 79:337–345

    Google Scholar 

  • Fry B (1983) Fish and shrimp migrations in the northern Gulf of Mexico analyzed using stable C, N and S isotope ratios. Fish Bull 81:789–801

    Google Scholar 

  • Fry B, Mumford PL, Robblee MB (1999) Stable isotope studies of pink shrimp (Farfantepenaeus duorarum Burkenroad) migrations on the southwestern Florida shelf. Bull Mar Sci 65:419–430

    Google Scholar 

  • Gaines SD, Bertness MD (1992) Dispersal of juveniles and variable recruitment in sessile marine species. Nature 360:579–580

    Article  Google Scholar 

  • Giles MA, Attas EM (1993) Rare earth elements in internal batch marks for rainbow trout: retention, distribution, and effects on growth of injected dysprosium, europium, and samarium. Trans Am Fish Soc 122:289–297

    Article  CAS  Google Scholar 

  • Gillanders BM (2001) Trace metals in four structures of fish and their use for estimates of stock structure. Fish Bull 99:410–419

    Google Scholar 

  • Gillanders BM (2005a) Otolith chemistry to determine movements of diadromous and freshwater fish. Aquat Living Resour 18:291–300

    Article  CAS  Google Scholar 

  • Gillanders BM (2005b) Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuar Coast Shelf Sci 64:47–57

    Article  Google Scholar 

  • Gillanders BM, Able KW, Brown JA et al (2003) Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Mar Ecol Prog Ser 247:281–295

    Article  Google Scholar 

  • Gillanders BM, Kingsford MJ (1996) Elements in otoliths may elucidate the contribution of estuarine recruitment to sustaining coastal reef populations of a temperate reef fish. Mar Ecol Prog Ser 141:13–20

    Article  Google Scholar 

  • Grimes CB, Able KW, Jones RS (1986) Tilefish, Lopholatilus chamaeleonticeps, habitat, behaviour and community structure in Mid-Atlantic and southern New England waters. Environ Biol Fish 15:273–292

    Google Scholar 

  • Grutter AS (1998) Habitat-related differences in the abundance of parasites from a coral reef fish: an indication of the movement patterns of Hemigymnus melapterus. J Fish Biol 53:49–57

    Google Scholar 

  • Guelinckx J, Maes J, Van Den Driessche P et al (2007) Changes in δ13C and δ15N in different tissues of juvenile sand goby Pomatoschistus minutus: a laboratory diet-switch experiment. Mar Ecol Prog Ser 341:205–215

    Article  CAS  Google Scholar 

  • Gunn JS, Patterson TA, Pepperell JG (2003) Short-term movement and behaviour of black marlin Makaira indica in the Coral Sea as determined through a pop-up satellite archival tagging experiment. Mar Freshw Res 54:515–525

    Article  Google Scholar 

  • Guy CS, Blankenship HL, Nielsen LA (1996) Tagging and marking. In: Murphy BR, Willis DW (eds) Fisheries techniques. American Fisheries Society, Bethesda, Maryland

    Google Scholar 

  • Hamer PA, Jenkins GP, Coutin P (2006) Barium variation in Pagrus auratus (Sparidae) otoliths: a potential indicator of migration between an embayment and ocean waters in south-eastern Australia. Estuar Coast Shelf Sci 68:686–702

    Article  Google Scholar 

  • Hamer PA, Jenkins GP, Gillanders BM (2005) Chemical tags in otoliths indicate the importance of local and distant settlement areas to populations of a temperate sparid, Pagrus auratus. Can J Fish Aquat Sci 62:623–630

    Article  Google Scholar 

  • Haney RA, Silliman BR, Rand DM (2007) A multilocus assessment of connectivity and historical demography in the bluehead wrasse (Thalassoma bifasciatum). Heredity 98:294–302

    Article  CAS  Google Scholar 

  • Hargreaves NB (1992) An electronic hot-branding device for marking fish. Progressive Fish-Culturist 54:99–104

    Article  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics Sinauer Associates Inc, Sunderland, Maryland

    Google Scholar 

  • Hawkes GP, Day RW, Wallace MW et al (1996) Analyzing the growth and form of mollusc shell layers, in situ, by cathodoluminescence microscopy and Raman spectroscopy. J Shell Res 15:659–666

    Google Scholar 

  • Hayes MC, Focher SM, Contor CR (2000) High-pressure injection of photonic paint to mark adult Chinook salmon. N Am J Aquac 62:319–322

    Article  Google Scholar 

  • Hellberg ME, Burton RS, Neigel JE et al (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290

    Google Scholar 

  • Heupel MR, Semmens JM, Hobday AJ (2006) Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays. Mar Freshw Res 57:1–13

    Article  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  Google Scholar 

  • Huxham M, Kimani E, Newton J et al (2007) Stable isotope records from otoliths as tracers of fish migration in a mangrove system. J Fish Biol 70:1554–1567

    Article  Google Scholar 

  • Ikeda Y, Arai N, Kidokoro H et al (2003) Strontium:calcium ratios in statoliths of Japanese common squid Todarodes pacificus (Cephalopoda: Ommastrephidae) as indicators of migratory behavior. Mar Ecol Prog Ser 251:169–179

    Article  CAS  Google Scholar 

  • Jones GP, Milicich MJ, Emslie MJ et al (1999) Self recruitment in a coral reef fish population. Nature 402:802–804

    Article  CAS  Google Scholar 

  • Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318

    Article  CAS  Google Scholar 

  • Kennedy BP, Blum JD, Folt CL et al (2000) Using natural strontium isotopic signatures as fish markers: methodology and application. Can J Fish Aquat Sci 57:2280–2292

    Article  CAS  Google Scholar 

  • Kennedy BP, Klaue A, Blum JD et al (2002) Reconstructing the lives of fish using Sr isotopes in otoliths. Can J Fish Aquat Sci 59:925–929

    Article  Google Scholar 

  • Knaepkens G, Maerten E, Tudorache C et al (2007) Evaluation of passive integrated transponder tags for marking the bullhead (Cottzis gobio), a small benthic freshwater fish: effects on survival, growth and swimming capacity. Ecol Freshw Fish 16:404–409

    Article  Google Scholar 

  • Kneib RT, Huggler MC (2001) Tag placement, mark retention, survival and growth of juvenile white shrimp (Litopenaeus setiferus Perez Farfante, 1969) injected with coded wire tags. J Exp Mar Biol Ecol 266:109–120

    Article  Google Scholar 

  • Kraus RT, Secor DH (2004) Incorporation of strontium into otoliths of an estuarine fish. J Exp Mar Biol Ecol 302:85–106

    Article  CAS  Google Scholar 

  • Kraus RT, Secor DH (2005) Application of the nursery role hypothesis to an estuarine fish. Mar Ecol Prog Ser 291:301–305

    Article  Google Scholar 

  • Lara MR, Jones DL, Chen Z et al (2008) Spatial variation of otolith elemental signatures among juvenile gray snapper (Lutjanus griseus) inhabiting southern Florida waters. Mar Biol 153:235–248

    Article  Google Scholar 

  • Layzer JB, Heinricher JR (2004) Coded wire tag retention in ebony shell mussels Fusconaia ebena. N Am J Fish Manage 24:228–230

    Article  Google Scholar 

  • Leis JM (1991) The pelagic stage of reef fishes: the larval biology of coral reef fishes. In: Sale PF (ed) The ecology of fishes on coral reefs. Academic Press, San Diego

    Google Scholar 

  • Lessios HA, Kane J, Robertson DR (2003) Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution 57:2026–2036

    CAS  Google Scholar 

  • Levin LA (1990) A review of methods for labeling and tracking marine invertebrate larvae. Ophelia 32:115–144

    Article  Google Scholar 

  • Levin LA, Huggett D, Myers P et al (1993) Rare-earth tagging methods for the study of larval dispersal by marine invertebrates. Limnol Oceanogr 38:346–360

    Article  Google Scholar 

  • Lim BK, Sakurai N (1999) Coded wire tagging of the short necked clam Ruditapes philippinarum. Fish Sci 65:163–164

    CAS  Google Scholar 

  • Lo-Yat A, Meekan M, Munksgaard N et al (2005) Small-scale spatial variation in the elemental composition of otoliths of Stegastes nigricans (Pomacentridae) in French Polynesia. Coral Reefs 24:646–653

    Article  Google Scholar 

  • Logan J, Haas H, Deegan L et al (2006) Turnover rates of nitrogen stable isotopes in the salt marsh mummichog, Fundulus heteroclitus, following a laboratory diet switch. Oecologia 147:391–395

    Article  Google Scholar 

  • MacKenzie K, Abaunza P (1998) Parasites as biological tags for stock discrimination of marine fish: a guide to procedures and methods. Fish Res 38:45–56

    Article  Google Scholar 

  • Malone JC, Forrester GE, Steele MA (1999) Effects of subcutaneous microtags on the growth, survival and vulnerability to predation of small reef fishes. J Exp Mar Biol Ecol 237:243–253

    Article  Google Scholar 

  • Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:136–142

    Google Scholar 

  • Marko PB, Rogers-Bennett L, Dennis AB (2007) MtDNA population structure and gene flow in lingcod (Ophiodon elongatus): limited connectivity despite long-lived pelagic larvae. Mar Biol 150:1301–1311

    Article  CAS  Google Scholar 

  • McCormick MI, Smith S (2004) Efficacy of passive integrated transponder tags to determine spawning-site visitations by a tropical fish. Coral Reefs 23:570–577

    Google Scholar 

  • McCulloch M, Cappo M, Aumend J et al (2005) Tracing the life history of individual barramundi using laser ablation MC-ICP-MS Sr-isotopic and Sr/Ba ratios in otoliths. Mar Freshw Res 56:637–644

    Article  CAS  Google Scholar 

  • Milton DA, Chenery SR (2003) Movement patterns of the tropical shad hilsa (Tenualosa ilisha) inferred from transects of 87Sr/86Sr isotope ratios in their otoliths. Can J Fish Aquat Sci 60:1376–1385

    Article  Google Scholar 

  • Milton DA, Chenery SR (2005) Movement patterns of barramundi Lates calcarifer, inferred from 87Sr/86Sr and Sr/Ca ratios in otoliths, indicate non-participation in spawning. Mar Ecol Prog Ser 301:279–291

    Article  CAS  Google Scholar 

  • Moles A, Rounds P, Kondzela C (1990) Use of the brain parasite Myxobolus neurobius in separating mixed stocks of sockeye salmon. Am Fish Soc Symp 7:224–231

    Google Scholar 

  • Munro AR, Gillanders BM, Elsdon TS et al (2008) Enriched stable isotope marking of juvenile golden perch Macquaria ambigua otoliths. Can J Fish Aquat Sci 65:276–285

    Article  CAS  Google Scholar 

  • Nieberding CM, Olivieri I (2007) Parasites: proxies for host genealogy and ecology? Trends Ecol Evol 22:156–165

    Article  Google Scholar 

  • Nielsen LA (1992) Methods of marking fish and shellfish. Special publication 23. American Fisheries Society, Bethesda, Maryland

    Google Scholar 

  • Ogden JC, Ehrlich PR (1977) The behavior of heterotypic resting schools of juvenile grunts (Pomadasyidae). Mar Biol 42:273–280

    Article  Google Scholar 

  • Olson RE, Pratt I (1973) Parasites as indicators of English sole (Parophrys vetulus) nursery grounds. Trans Am Fish Soc 102:405–411

    Article  Google Scholar 

  • Olson RR, McPherson R (1987) Potential vs realized larval dispersal – fish predation on larvae of the ascidian Lissiclinium patella (Gottschaldt). J Exp Mar Biol Ecol 110:245–256

    Article  Google Scholar 

  • Ombredane D, Bagliniere JL, Marchand F (1998) The effects of Passive Integrated Transponder tags on survival and growth of juvenile brown trout (Salmo trutta L.) and their use for studying movement in a small river. Hydrobiologia 372:99–106

    Article  Google Scholar 

  • Paetkau D, Slade R, Burden M et al (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158

    Article  Google Scholar 

  • Palumbi SR (2004) Marine reserves and ocean neighborhoods: the spatial scale of marine populations and their management. Annu Rev Environ Resour 29:31–68

    Article  Google Scholar 

  • Patterson HM, Kingsford MJ (2005) Elemental signatures of Acanthochromis polyacanthus otoliths from the Great Barrier Reef have significant temporal, spatial, and between-brood variation. Coral Reefs 24:360–369

    Article  Google Scholar 

  • Patterson HM, Kingsford MJ, McCulloch MT (2004a) Elemental signatures of Pomacentrus coelestis otoliths at multiple spatial scales on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 270:229–239

    Article  Google Scholar 

  • Patterson HM, Kingsford MJ, McCulloch MT (2005) Resolution of the early life history of a reef fish using otolith chemistry. Coral Reefs 24:222–229

    Article  Google Scholar 

  • Patterson HM, McBride RS, Julien N (2004b) Population structure of red drum (Sciaenops ocellatus) as determined by otolith chemistry. Mar Biol 144:855–862

    Article  Google Scholar 

  • Planes S, Fauvelot C (2002) Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evolution 56:378–399

    CAS  Google Scholar 

  • Pollard MJ, Kingsford MJ, Battaglene SC (1999) Chemical marking of juvenile snapper, Pagrus auratus (Sparidae), by incorporation of strontium into dorsal spines. Fish Bull 97:118–131

    Google Scholar 

  • Prince ED, Cowen RK, Orbesen ES et al (2005) Movements and spawning of white marlin (Tetrapturus albidus) and blue marlin (Makaira nigricans) off Punta Cana, Dominican Republic. Fish Bull 103:659–669

    Google Scholar 

  • Purcell JFH, Cowen RK, Hughes CR et al (2006a) Weak genetic structure indicates strong dispersal limits: a tale of two coral reef fish. Proc R Soc B-Biol Sci 273:1483–1490

    Article  CAS  Google Scholar 

  • Purcell SW, Blockmans BF, Nash WJ (2006b) Efficacy of chemical markers and physical tags for large-scale release of an exploited holothurian. J Exp Mar Biol Ecol 334:283–293

    Article  CAS  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc. Natl. Acad Sci USA 94:9197–9201

    Article  CAS  Google Scholar 

  • Ruttenberg BI, Hamilton SL, Hickford MJH et al (2005) Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Mar Ecol Prog Ser 297:273–281

    Article  CAS  Google Scholar 

  • Ruttenberg BI, Warner RR (2006) Spatial variation in the chemical composition of natal otoliths from a reef fish in the Galapagos Islands. Mar Ecol Prog Ser 328:225–236

    Article  CAS  Google Scholar 

  • Saura A (1996) Use of hot branding in marking juvenile pikeperch (Stizostedion lucioperca). Annu Zool Fenn 33:617–620

    Google Scholar 

  • Szedlmayer ST, Able KW (1993) Ultrasonic telemetry of age-0 summer flounder, Paralichythys dentatus, movements in a southern New Jersey estuary. Copeia 1993:728–736

    Google Scholar 

  • Schaefer KM, Fuller DW, Block BA (2007) Movements, behavior, and habitat utilization of yellowfin tuna (Thunnus albacares) in the northeastern Pacific Ocean, ascertained through archival tag data. Mar Biol 152:503–525

    Article  Google Scholar 

  • Schroder SL, Knudsen CM, Volk EC (1995) Marking salmon fry with strontium chloride solutions. Can J Fish Aquat Sci 52:1141–1149

    Article  CAS  Google Scholar 

  • Semmens JM, Pecl GT, Gillanders BM et al (2007) Approaches to resolving cephalopod movement and migration patterns. Rev. Fish Biol. Fish 17:401–423

    Article  Google Scholar 

  • Sharp WC, Lellis WA, Butler MJ et al (2000) The use of coded microwire tags in mark-recapture studies of juvenile Caribbean spiny lobster, Panulirus argus. J Crust Biol 20:510–521

    Article  Google Scholar 

  • Sibert JR, Nielsen J (2001) Electronic tagging and tracking in marine fisheries. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Skinner MA, Courtenay SC, Parker WR et al (2005) Site fidelity of mummichogs (Fundulus heteroclitus) in an Atlantic Canadian estuary. Water Qual Res J Canada 40:288–298

    CAS  Google Scholar 

  • Sumpton WD, Sawynok B, Carstens N (2003) Localised movement of snapper (Pagrus auratus, Sparidae) in a large subtropical marine embayment. Mar Freshw Res 54:923–930

    Article  Google Scholar 

  • Swearer SE, Caselle JE, Lea DW et al (1999) Larval retention and recruitment in an island population of a coral-reef fish. Nature 402:799–802

    Article  CAS  Google Scholar 

  • Takahashi M, Okamura H, Yokawa K et al (2003) Swimming behaviour and migration of a swordfish recorded by an archival tag. Mar Freshw Res 54:527–534

    Article  Google Scholar 

  • Thompson JM, Hirethota PS, Eggold BT (2005) A comparison of elastomer marks and fin clips as marking techniques for walleye. N Am J Fish Manage 25:308–315

    Article  Google Scholar 

  • Thorrold SR, Jones GP, Hellberg ME et al (2002) Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bull Mar Sci 70:291–308

    Google Scholar 

  • Thorrold SR, Jones GP, Planes S et al (2006) Transgenerational marking of embryonic otoliths in marine fishes using barium stable isotopes. Can J Fish Aquat Sci 63:1193–1197

    Article  CAS  Google Scholar 

  • Tulevech SM, Recksiek CW (1994) Acoustic tracking of adult white grunt, Haemulon plumieri, in Puerto Rico and Florida. Fish Res 19:301–319

    Article  Google Scholar 

  • Tupper M (2007) Identification of nursery habitats for commercially valuable humphead wrasse Cheilinus undulatus and large groupers (Pisces: Serranidae) in Palau. Mar Ecol Prog Ser 332:189–199

    Article  Google Scholar 

  • Urawa S, Kawana M, Anma G et al (2000) Geographic origin of high seas chum salmon determined by genetic and thermal otolith markers. N Pac Anad Fish Comm Bull 2:283–290

    Google Scholar 

  • van der Haegen GE, Blankenship HL, Hoffmann A et al (2005) The effects of adipose fin clipping and coded wire tagging on the survival and growth of spring Chinook salmon. N Am J Fish Manage 25:1161–1170

    Article  Google Scholar 

  • van Herwerden L, Benzie J, Davies C (2003) Microsatellite variation and population genetic structure of the red throat emperor on the Great Barrier Reef. J Fish Biol 62:987–999

    Article  Google Scholar 

  • van Rooij JM, Bruggemann JH, Videler JJ et al (1995) Plastic growth of the herbivorous reef fish Sparisoma viride – field evidence for a trade-off between growth and reproduction. Mar Ecol Prog Ser 122:93–105

    Article  Google Scholar 

  • Verweij MC, Nagelkerken I (2007) Short and long-term movement and site fidelity of juvenile Haemulidae in back-reef habitats of a Caribbean embayment. Hydrobiologia 592:257–270

    Article  Google Scholar 

  • Verweij MC, Nagelkerken I, Hans I et al (2008) Seagrass nurseries contribute to coral reef fish populations. Limnol Oceanogr 53:1540–1547

    Google Scholar 

  • Verweij MC, Nagelkerken I, Hol KEM et al (2007) Space use of Lutjanus apodus including movement between a putative nursery and a coral reef. Bull Mar Sci 81:127–138

    Google Scholar 

  • Voegeli FA, Smale MJ, Webber DM et al (2001) Ultrasonic telemetry, tracking and automated monitoring technology for sharks. Environ Biol Fish 60:267–281

    Article  Google Scholar 

  • Volk EC, Schroder SL, Grimm JJ (1999) Otolith thermal marking. Fish Res 43:205–219

    Article  Google Scholar 

  • Walther BD, Thorrold SR (2006) Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Mar Ecol Prog Ser 311:125–130

    Article  CAS  Google Scholar 

  • Warner RR, Swearer SE, Caselle JE et al (2005) Natal trace-elemental signatures in the otoliths of an open-coast fish. Limnol Oceanogr 50:1529–1542

    Article  CAS  Google Scholar 

  • Waser PM, Strobeck C (1998) Genetic signatures of interpopulation dispersal. Trends Ecol Evol 13:43–44

    CAS  Google Scholar 

  • Wells BK, Bath GE, Thorrold SR et al (2000) Incorporation of strontium, cadmium, and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry. Can J Fish Aquat Sci 57:2122–2129

    Article  CAS  Google Scholar 

  • Wertheimer AC, Thedinga JF, Heintz RA et al (2002) Comparative effects of half-length coded wire tagging and ventral fin removal on survival and size of pink salmon fry. N Am J Aquac 64:150–157

    Article  Google Scholar 

  • Williams HH, MacKenzie K, McCarthy AM (1992) Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Rev Fish Biol Fish 2:144–176

    Article  Google Scholar 

  • Willis TJ, Parsons DM, Babcock RC (2001) Evidence for long-term site fidelity of snapper (Pagrus auratus) within a marine reserve. NZ J Mar Freshw Res 35:581–590

    Article  Google Scholar 

  • Wilson AJ, Ferguson MM (2002) Molecular pedigree analysis in natural populations of fishes: approaches, applications, and practical considerations. Can J Fish Aquat Sci 59:1696–1707

    Article  Google Scholar 

  • Wilson SK, Wilson DT, Lamont C et al (2006) Identifying individual great barracuda Sphyraena barracuda using natural body marks. J Fish Biol 69:928–932

    Article  Google Scholar 

  • Yamada SB, Mulligan TJ (1987) Marking nonfeeding salmonid fry with dissolved strontium. Can J Fish Aquat Sci 44:1502–1506

    Article  Google Scholar 

  • Zacherl DC (2005) Spatial and temporal variation in statolith and protoconch trace elements as natural tags to track larval dispersal. Mar Ecol Prog Ser 290:145–163

    Article  CAS  Google Scholar 

  • Zeller DC (1998) Spawning aggregations: patterns of movement of the coral trout Plectropomus leopardus (Serranidae) as determined by ultrasonic telemetry. Mar Ecol Prog Ser 162:253–263

    Article  Google Scholar 

  • Zeller DC (1999) Ultrasonic telemetry: its application to coral reef fisheries research. Fish Bull 97:1058–1065

    Google Scholar 

  • Zeller DC, Russ GR (1998) Marine reserves: patterns of adult movement of the coral trout (Plectropomus leopardus (Serranidae)). Can J Fish Aquat Sci 55:917–924

    Article  Google Scholar 

  • Zeller DC, Russ GR (2000) Population estimates and size structure of Plectropomus leopardus (Pisces : Serranidae) in relation to no-fishing zones: mark-release-resighting and underwater visual census. Mar Freshw Res 51:221–228

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bronwyn M. Gillanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gillanders, B.M. (2009). Tools for Studying Biological Marine Ecosystem Interactions—Natural and Artificial Tags. In: Nagelkerken, I. (eds) Ecological Connectivity among Tropical Coastal Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2406-0_13

Download citation

Publish with us

Policies and ethics