Skip to main content
  • 4529 Accesses

Coal is the primary source of energy for most of the countries in the world. Although the main use of coal is in the generation of electricity, recently synthesis of liquid fuel from coal is becoming attractive, although coal liquefaction is a very old and well known process that was developed just after World War I. This may relieve pressure on petroleum as the only source of automobile fuel. However, a major concern in the use of coal is emissions of various pollutants including gases that cause acid rain and CO2 emissions — a major contributor to global warming. Two approaches are pursued to reduce emissions from coal power plants. Most of the recent coal power plants are designed to produce supercritical steam, increasing the efficiency to about 50%. Another approach is to develop zero emission coal power plants. In this chapter, a comprehensive discussion on the use of coal and associated issues are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Statistical review of world energy 2007, British Petroleum, http://www.bp.com/ productlanding.do?categoryId=6848&contentId=7033471

  2. Moore ES (1922) Coal: Its Properties, Analysis, Classification, Geology, Extraction, Uses, and Distribution. Wiley, New York, 124

    Google Scholar 

  3. Jeffrey EC (1915) The mode of origin of coal. J Geol 23: 218–231

    Google Scholar 

  4. Jeffrey EC (1924) Origin and organization of coal. Mem Am Acad Arts Sci 15: 1–52

    Google Scholar 

  5. Potonie H (1908) The origin of coal and related products, including petroleum. Ber Dent Pharm Ges 70: 180–223

    Google Scholar 

  6. Boudouard O (1911) Action of physical and chemical agents on wood, peat and lignite: formation of coal. Rev Metal 8: 38–46

    Google Scholar 

  7. Runner JJ (1919) Origin of coal. Pahasapa Quart 8: 74–83

    Google Scholar 

  8. Urbasch S (1922) The origin of coal, Naturwissenschaftliche Umschau der Chemiker-Zeitung 11: 38–41

    Google Scholar 

  9. Fischer F (1925) Origin of coal. Z deut geol Ges 77A: 534–550

    Google Scholar 

  10. Schrader H (1926) Recent English work on the constitution of coal. Brennstoff-Chemie 7: 155–157

    Google Scholar 

  11. Marcusson J (1927) Lignin and oxycellulose theory (of the origin of coal) Angewandte Chemie 40: 48–50

    Article  Google Scholar 

  12. Strache H (1927) Lignitic origin of coal. Brennstoff-Chemie 8: 21–22

    Google Scholar 

  13. Lieske R (1930) Origin of coal according to the present position of biological investigation. Brennstoff-Chemie 11: 101–105

    Google Scholar 

  14. Liesye R (1930) Lignin theory of the origin of coal from the biological point of view. Brennstoff-Chemie 11: 86–90

    Google Scholar 

  15. Potonie R (1929) The origin of coal. Intern Bergwirt and Bergtech 22: 395–398

    Google Scholar 

  16. Fuchs W (1930) Origin of coal according to the present position of chemical investigation. Brennstoff-Chemie 11: 106–112

    Google Scholar 

  17. Schopf JM (1952) Was decay important in origin of coal? J Sediment Petrol 22: 61–69

    Google Scholar 

  18. Hatcher PG, Breger IA, Szeverenyi N, Maciel GE (1982) Nuclear magnetic resonance studies of ancient buried wood — II. Observations on the origin of coal from lignite to bituminous coal. Org Geochem 4: 9–18

    Article  Google Scholar 

  19. Fischer F, Schrader H. Old and new ideas about the original coal substance. Ges Abh Kenninis der Kohle 5: 543–552

    Google Scholar 

  20. Stach E (1970) Significance of cellulose for the origin of coal. Fortschritte in der Ge-ologie von Rheinland und Westfalen 17: 439–460

    Google Scholar 

  21. Sagui CL (1933) Origin of coal. Rev Geol 14: 316

    Google Scholar 

  22. Sagui CL (1931) Origin of coal. Bollettino della Societa Geologica Italiana 50: 227–228

    Google Scholar 

  23. Terres E (1932) The origin of coal and petroleum. Proc 3rd Int Conf Bituminous Coal 2: 797–808

    Google Scholar 

  24. Bode H (1930) The lignin theory and the origin of coal. Kohle und Erz 27: 652–656, 681–656, 711–614

    Google Scholar 

  25. Berl E, Schmidt A, Koch H (1930) The origin of coal. Angewandte Chemie 43: 1018–1019

    Article  Google Scholar 

  26. Bode H (1930) Lignin theory [of the origin of coal]. Brennstoff-Chemie 11: 81–86

    Google Scholar 

  27. Donath E (1924) The question of the origin of coal. Brennstoff-Chemie 5: 136–138

    Google Scholar 

  28. Potonie R (1922) The lignin origin of coal: a geologic and palaeontologic impossibility. Braunkohle (Duesseldorf) 21: 365–369

    Google Scholar 

  29. White D (1913) Origin of coal. US Bur Mines Bull 38: 1–4

    Google Scholar 

  30. Schwarz H, Laupper G (1922) The origin of coal. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zuerich 67: 268–371

    Google Scholar 

  31. Petraschek W (1923) Geology of coal in the Austrian states. II. The general geology of coal. Montanistische Rundschau 15: 37–160

    Google Scholar 

  32. Obst W (1928) The origin of coal. Chemiker-Zeitung 52: 629

    Google Scholar 

  33. Pieters HAJ (1930) Composition and origin of coal. Het Gas 50: 289–289

    Google Scholar 

  34. Fuchs W, Horn O (1931) The origin of coal. Angewandte Chemie 44: 180–184

    Article  Google Scholar 

  35. Stadnikov G (1931) The origin of coal strata. Kolloid-Zeitschrift 57: 221–225

    Article  Google Scholar 

  36. Berl E, Schmidt A, Koch H (1932) The origin of coal. Angew Chem 45: 517–519

    Article  Google Scholar 

  37. Berl E (1932) The origin of coal, oil and asphalt. Montanistische Rundschau 24: 1–10

    Google Scholar 

  38. Stach E (1933) The origin of coal vitrite. Angew Chem 46: 275–278

    Article  Google Scholar 

  39. Galle RR (1935) The origin of coals. Khimiya Tverdogo Topliva (Leningrad) 6: 683–694

    Google Scholar 

  40. Stadnikov GL (1937) Constitution and the origin of coal. Brennstoff-Chemie 18: 108–110

    Google Scholar 

  41. Hendricks TA (1945) The origin of coal. Chemistry of Coal Utilization. Wiley, New York, vol 1, pp 1–24

    Google Scholar 

  42. Fuchs W (1946) The origin of coal and the change of rank in coal fields. Fuel 25: 132–134

    Google Scholar 

  43. Fuchs W (1952) Recent investigations on the origin of coal. Chemiker-Zeitung 76: 61–66

    Google Scholar 

  44. Fujita A (1961) The origin of coal. Kagaku no Ryoiki 15: 239–241

    Google Scholar 

  45. Krejci-Graf K (1962) Origin of coal and petroleum. Freiberger Forschungshefte A C123: 5–34

    Google Scholar 

  46. Schobert HH (1989) The geochemistry of coal. I. The classification and origin of coal. J Chem Educ 66: 242–244

    Google Scholar 

  47. Scott AC (2002) Coal petrology and the origin of coal macerals: a way ahead? Int J Coal Geol 50: 119–134

    Article  Google Scholar 

  48. Ritz M (2007) Identification of origin of coal from the Ostrava-Karvina Mining District by infrared spectroscopy and discriminant analysis. Vib Spectrosc 43: 319–323

    Article  Google Scholar 

  49. Coal origin and properties www.coaleducation.org/Ky_Coal_Facts/coal_resources/ coal_origin.htm

  50. Walker S (2000) Major Coalfields of the World. IEA Coal Research, London, 2000

    Google Scholar 

  51. Hensel RP (1981) Coal: Classification, Chemistry and Combustion. Coal fired industrial boilers workshop, Raleigh, NC, USA

    Google Scholar 

  52. World Coal Institute, Richmond-upon-Thames, UK

    Google Scholar 

  53. Survey of Energy Resources 2004, World Energy Council, London, UK

    Google Scholar 

  54. Smith KL, Smoot LD (1990) Characteristics of commonly used US coals — towards a set of standard research coals. Prog Energy Combust Sci 16(1): 1–53

    Article  Google Scholar 

  55. Bhatia SK (1987) Modeling the pore structure of coal. AIChE J 33: 1707–1718

    Article  Google Scholar 

  56. Brusset H (1949) The most recent view of the structures of coal. Memoires ICF 102: 69–74

    Google Scholar 

  57. Carlson GA (1991) Molecular modeling studies of bituminous coal structure. Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 36: 398–404

    Google Scholar 

  58. Carlson GA (1992) Computer simulation of the molecular structure of bituminous coal. Energy Fuels 6: 771–778

    Article  Google Scholar 

  59. Carlson GA, Faulon JI (1994) Applications of molecular modeling in coal research. Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 39: 18–21

    Google Scholar 

  60. Chung KE (1989) Fundamental chemical structure of coal. Final report, Electr Power Res Inst, Palo Alto, CA, USA, p 47

    Google Scholar 

  61. Crussard L (1938) Recent data on the structure of coal. Rev Ind Minerale No. 422: 331–350

    Google Scholar 

  62. Davidson RM (1980) Molecular Structure of Coal. IEA Coal Research, London, UK

    Google Scholar 

  63. Davidson RM (1980) Molecular Structure of Coal. IEA Report No. ICTIS/TR08. London, UK, p 86

    Google Scholar 

  64. Davidson RM (1982) Molecular structure of coal. Coal Sci 1: 83–160

    Google Scholar 

  65. Dryden IGC (1953) Chemical structure of coal. Fuel 32: 395–396

    Google Scholar 

  66. Dryden IGC (1955) Chemical interpretation of x-ray studies of the ultrafine structure of coal. Fuel 34: S29–S35

    Google Scholar 

  67. Dryden IGC (1956) The molecular structure of coal: comparison of results based on organochemical methods and infrared studies. Brennstoff-Chemie 37: 42–46

    Google Scholar 

  68. Fischer F, Schrader H (1921) The origin and chemical structure of coal. Brennstoff-Chemie 2: 37–45

    Google Scholar 

  69. Fischer F, Schrader H (1922) Observations on the origin and chemical structure of coal. Brennstoff-Chemie 3: 65–72

    Google Scholar 

  70. Gagarin SG, Skripchenko GB (1986) Modern concepts of the chemical structure of coals. Khimiya Tverdogo Topliva (Moscow, Russian Federation): 3–14

    Google Scholar 

  71. Gillet AC (1947) The molecular structure of coal. Chaleur et Industrie 28: 274–275

    Google Scholar 

  72. Gillet AC (1938) Formation and chemical constitution of coal, lignites and peat. Revue Universelle des Mines, de la Metallurgie, de la Mecanique, des Travaux Publics, des Sciences et des Arts Appliques a l'Industrie 14: 782–786

    Google Scholar 

  73. Green TK (1984) The macromolecular structure of coal: 184

    Google Scholar 

  74. Green TK (1987) The macromolecular structure of coal. J Coal Qual 6: 90–93

    Google Scholar 

  75. Grigoriew H (1990) Diffraction studies of coal structure. Fuel 69: 840–845

    Article  Google Scholar 

  76. Grigoriew H, Cichowska G (1990) Spatial coal structure models. J Appl Crystallogr 23: 209–210

    Article  Google Scholar 

  77. Grimes WR (1982) The physical structure of coal. Coal Science 1: 21–42

    Google Scholar 

  78. Harris LA, Yust CS (1979) Ultrafine structure of coal determined by electron microscopy. Oak Ridge Natl Lab, Oak Ridge, TN: 8

    Google Scholar 

  79. Heredy LA, Wender I (1980) Model structure for a bituminous coal. Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 25: 38–45

    Google Scholar 

  80. Hower J, Suarez-Ruiz CI, Mastalerz M, Cook AC (2007) The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun. Spec-trochimica acta. Part A, Molecular and biomolecular spectroscopy 67: 1433–1437

    Article  Google Scholar 

  81. Inouye K (1953) Structural skeleton in a bituminous coal. Nature (London, UK) 171: 487–488

    Article  Google Scholar 

  82. Kasatochkin VI, Razumova LL (1956) X-ray analysis of the molecular structure of anthracite and coke. Isvest Akad Nauk S.S.S.R Ser. Fiz. 20: 751–754

    Google Scholar 

  83. Kemp NC (1924) The X-ray analysis of coal. Iron and Coal Trades Rev 108: 295–296

    Google Scholar 

  84. Kessler MF (1956) New conceptions of the molecular coal structure. Uhli 6: 376–380

    Google Scholar 

  85. King JG, Wilkins ET (1944) The internal structure of coal. Proc Conf Ultra-fine Structure of Coals and Cokes, Brit Coal Utilisation Research Assoc: 46–56

    Google Scholar 

  86. Kitazaki U (1953) The structure of coal. J Geol Soc Jpn 59: 241–255

    Google Scholar 

  87. Ladner WR, Stacey AE (1961) Possible coal structures. Fuel 40: 452–454

    Google Scholar 

  88. Larsen JW (1978) Some thoughts on the organic structure of bituminous coal. Proc Coal Chem Workshop: 39–51

    Google Scholar 

  89. Larsen JW (1988) Macromolecular structure and coal pyrolysis. Fuel Process Technol 20: 13–22

    Article  Google Scholar 

  90. Larsen JW (1992) The physical and macromolecular structure of coals. NATO ASI Series, Ser C: Math Phys Sci 370: 1–14

    Google Scholar 

  91. Lazarov L (1982) Modern conceptions of the molecular structure of coal. Freiberger Forschungshefte A A 668: 37–56

    Google Scholar 

  92. Lomax J (1913) Microscopic structure of coal and its constituents. J Soc Chem Indus, London 32: 276

    Google Scholar 

  93. Lomax J (1913) Microscopic structure of coal and its constituents. J Gas Lighting, Water Supply Sanitary Improvement 121: 601

    Google Scholar 

  94. Lynch LJ (1987) Molecular properties of coals. Chem Aust 54: 244–246

    Google Scholar 

  95. Marzec A (1981) Molecular structure of coal. Chemia Stosowana 25: 381–389

    Google Scholar 

  96. Neavel RC (1979) Coal structure and coal science: overview and recommendations. Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 24: 73–82

    Google Scholar 

  97. Neavel RC (1981) Coal structure and coal science: overview and recommendations. Adv Chem Ser 192: 1–13

    Google Scholar 

  98. Nomura M, Iino M, Sanada Y, Kumagai H (1994) Advanced studies on coal structure. Enerugi, Shigen 15: 177–184

    Google Scholar 

  99. Nomura M, Murata S, Miyake M, Miura M (1993) An approach to chemical structure of coal. Nippon Enerugi Gakkaishi 72: 321–329

    Google Scholar 

  100. Ohuchi K (1980) Structure of coal. Petrotech (Tokyo, Japan) 3: 513–519

    Google Scholar 

  101. Orchin M (1953) Chemical structure of coal. Ohio State Univ Eng Expt Sta News 25: 25–31

    Google Scholar 

  102. Riley HL (1947) Molecular structure of coal. Science Progress (St. Albans, UK) 35: 590–604

    Google Scholar 

  103. Riley HL (1948) Macromolecular structure of bituminous coal. Bulletin des Societes Chimiques Belges 57: 400–415

    Google Scholar 

  104. Sanada Y (1980) Macromolecular structure of coal seen from viewpoint of chemical application. Kagaku Kogyo 31: 241–245

    Google Scholar 

  105. Schrauth W (1923) The chemical structure of coal. J Chem Soc, Abstracts 124: 502–503

    Google Scholar 

  106. Shapiro MD, Al'terman LS, Macromolecular structure of coals and their technological properties. Khimiya Tverdogo Topliva (Moscow, Russian Federation): 17–22

    Google Scholar 

  107. Smirnov RN (1959) Modern concepts of the structure of coal. Uspekhi Khimii 28: 826–849

    Google Scholar 

  108. Smirnov RN (1979) Polymeric structure of coal. Khimiya Tverdogo Topliva (Moscow, Russian Federation): 40–45

    Google Scholar 

  109. Stopes MC, Wheeler RV (1916) The structure of coal, Colliery Guardian 112: 464

    Google Scholar 

  110. Szklarska-Olszewska Z (1951) Structure of coal and coke. Prace Glownego Inst Met 3: 161–172

    Google Scholar 

  111. Takanohashi T (1994) Cross-link structure of coal. Tohoku Daigaku Hanno Kagaku Kenkyusho Hokoku 4: 19–40

    Google Scholar 

  112. Thiessen R (1913) Microscopic study of coal. Bull 38: 187–379

    Google Scholar 

  113. van Krevelen DW (1947) The structure of coal, the coalification and the carbonization process. Chemisch Weekblad 43: 20–27

    Google Scholar 

  114. van Krevelen DW (1959) Chemical structure of coal. Fuel 38: 245–247

    Google Scholar 

  115. Vorres KS (2004) Coal. Kirk-Othmer Encyclopedia of Chemical Technology (5th Edition) 6: 703–771

    Google Scholar 

  116. Whitaker A (1955) The ultimate structure of coal. J Inst Fuel 28: 218–223

    Google Scholar 

  117. Whitehurst DD (1978) A primer on the chemistry and constitution of coal. ACS Symp Ser 71: 1–35

    Google Scholar 

  118. Xuguang S (2005) The investigation of chemical structure of coal macerals via trans-mitted-light FT-IR microspectroscopy, Spectrochim Acta A Mol Biomol Spectrosc 62: 557–564

    Article  Google Scholar 

  119. Yokono T, Shibuya T, Sanada Y (1978) Nuclear magnetic relaxation and x-ray diffraction studies of the structure of coal. Nippon Kagaku Kaishi: 1132–1136

    Google Scholar 

  120. Zwietering P, van Krevelen DW (1954) Chemical structure and properties of coal. IV. Pore structure. Fuel 33: 331–337

    Google Scholar 

  121. Given PH (1960) The distribution of hydrogen in coals and its relation to coal structure. Fuel 39: 147–153

    Google Scholar 

  122. Solomon PR (1981) New approaches in coal chemistry. ACS Symposium Series No. 169, American Chemical Society, Washington, DC: 61–71

    Google Scholar 

  123. Shinn JH (1984) From coal to single stage and two stage products: a reactive model to coal structure. Fuel 63: 1187–1196

    Article  Google Scholar 

  124. Wiser WH (1984) Conversion of bituminous coal to liquids and gases: chemistry and representative processes. NATO ASI Series C 124: 325–350

    Google Scholar 

  125. KGS (Kentucky Geological Survey) (2006) Methods of Mining. www.uky.edu/kgs/coal/ coal_mining.htm

  126. United Mine Workers of America (UMWA) http://www.umwa.org/mining/surmine. shtml

  127. Burns SS (2005) Bringing Down the Mountains: The Impact of Mountaintop Removal Surface Coal Mining on Southern West Virginia Communities. Ph.D. dissertation. West Virginia University.

    Google Scholar 

  128. Kramer DA (2001) Explosives, US Geological Survey Mineral Handbook, 25–1, 25–6

    Google Scholar 

  129. United Mine Workers of America (UMWA) www.umwa.org/mining/ugmine.shtml

  130. EIA (Energy Information Administration) (2007) Glossary: Longwall Mining. www.eia. doe.gov/glossary/glossary_l.htm

  131. United Mine Workers of America (UMWA) www.umwa.org/mining/lwmine.shtml

  132. Federal Energy Regulatory Commission, FERC Form 423, Monthly Report of Cost and Quality of Fuels for Electric Plants

    Google Scholar 

  133. EIA (Energy Information Administration) Form EIA-3, Quarterly Coal Consumption and Quality Report, Manufacturing Plants

    Google Scholar 

  134. EIA (Energy Information Administration) Form EIA-5, Quarterly Coal Consumption and Quality Report, Coke Plants.

    Google Scholar 

  135. EIA (Energy Information Administration) Form EIA-7A, Coal Production Report

    Google Scholar 

  136. US Department of Labor, Mine Safety and Health Administration, Form 7000-2, Quarterly Mine Employment and Coal Production Report

    Google Scholar 

  137. McCloskey Coal Information Service. www.coal-ink.com

  138. NCC (National Coal Council) (2006) Coal: America's Energy Future, Volumes I. Washington, DC, National Coal Council: 132

    Google Scholar 

  139. EIA (Energy Information Administration) (2006) Average Contract Coal Transportation Rate per Ton-Mile by Transportation Mode, 1979–1997. Washington, DC, U.S. Department of Energy. www.eia.doe.gov/cneaf/coal/ctrdb/tab37.html

  140. USACE (U.S. Army Corps of Engineers) (2006) Waterborne Commerce of the United States, Calendar Year 2004. Part 5-National Summaries. www.iwr.usace.army.mil/ ndc/wcsc/pdf/wcusnatl04.pdf

  141. Background Information for Establishment of National Standards of Performance for New Sources: Coal Cleaning Industry, EPA Contract No. CPA-70-142, Environmental Engineering Inc, Gainesville, FL, July 1971

    Google Scholar 

  142. Air Pollutant Emissions Factors, Contract No. CPA-22-69-119, Resources Research, Inc Reston, VA, April 1970

    Google Scholar 

  143. Second Review of New Source Performance Standards for Coal Preparation Plants, EPA-450/3-88-001, US Environmental Protection Agency, Research Triangle Park, NC, February 1988

    Google Scholar 

  144. Ahmad S, Saeed MT, Taj F (2005) Developments in coal desulphurization — a review. Part-I: pre-combustion desulphurization. Pakistan Journal of Science 57: 19–27

    Google Scholar 

  145. Atherton LF (1985) Chemical coal beneficiation of low-rank coals. Proc. — Int. Conf. Coal Sci.: 553–556

    Google Scholar 

  146. Gupta V, Mohanty MK (2006) Coal preparation plant optimization: a critical review of the existing methods. Int J Mineral Process 79: 9–17

    Article  Google Scholar 

  147. Fonseca AG (1995) Challenges of coal preparation. Mining Engineering (Littleton, CO) 47: 828–834

    Google Scholar 

  148. Liu F (2003) Comprehensive review on coal preparation technology, Xuanmei Jishu: 1–13

    Google Scholar 

  149. McCandless LC, Onursal AB, Moore JM (1986) Assessment of coal cleaning technology. Final report, Versar Inc Springfield, VA, USA: 209

    Google Scholar 

  150. Okazaki TA (2000) survey of coal cleaning technologies (coal preparation) Nippon Enerugi Gakkaishi 79: 267–284

    Google Scholar 

  151. Onursal AB, Buroff J, Strauss J (1986) Evaluation of conventional and advanced coal cleaning techniques. Versar Inc Springfield, VA, USA: 385

    Google Scholar 

  152. Osborne DG (1986) Fine coal cleaning by gravity methods: a review of current practice. Coal Prep (London, UK) 2: 207–241

    Article  Google Scholar 

  153. Osborne DG, Fonseca AG (1992) Coal preparation — the past ten years. Coal Preparation (London, UK) 11: 115–143

    Article  Google Scholar 

  154. Parekh BK (1996) Coal Preparation. Coal Preparation (Gordon & Breach) 17: 1

    Article  Google Scholar 

  155. Picard JL (1985) Coal preparation washing processes: a technology review. CANMET Report 85-2E: 87

    Google Scholar 

  156. Swanson A (2001) Australian coal preparation — A 2000 review. J South African Institute of Mining & Metallurgy 101: 107–113

    Google Scholar 

  157. Jeffrey Specialty Equipment Corporation, Woodruff, SC, USA, www.jeffreycorp.com

  158. Pennsylvania Crusher Corporation, Broomall, PA, USA, www.penncrusher.com

  159. Taylor JCP (1959) Advances in impact crushing techniques as related to coal. Inst Mining, Met Petrol Engrs Proc A.I.M.E 18: 29–30

    Google Scholar 

  160. Sharma MK, Chaudhuri AJ, Prasad S, Prasad BN, Das AK, Parthasarthy L (2007) Development of new coal blend preparation methodologies for improvement in coke quality. Coal Preparation (Philadelphia, PA, USA) 27(1–3): 57–77

    Article  Google Scholar 

  161. Kimura H (1982) Properties and crushing of coal. Funtai to Kogyo 14(11): 21–28

    Google Scholar 

  162. Zbraniborski O (1965) Apparatus for crushing and reducing coal samples. Koks, Smola, Gaz 10(2): 64–66

    Google Scholar 

  163. Banaszewski T (1996) Classification and crushing techniques used in coal preparation. Recent Adv Coal Process 1: 25–29

    Google Scholar 

  164. Mohanty MK, Honaker RQ, Patwardhan A (2001) Altair centrifugal jig: an in-plant evaluation for fine coal cleaning. Proceedings — Annual International Pittsburgh Coal Conference 18th: 2849–2872

    Google Scholar 

  165. Mohanty MK, Honaker RQ, Patwardhan A (2002) Altair jig: an in-plant evaluation for fine coal cleaning. Mineral Eng 15: 157–166

    Article  Google Scholar 

  166. Olajide O, Cho EH (1987) Study of the jigging process using a laboratory-scale Baum jig. Minerals Metallurgical Process 4: 11–14

    Google Scholar 

  167. Peng FF, Dai Q, Yang DC (2002) Analysis of packed column jig for fine coal separation. Coal Prep (London, UK) 22: 199–217

    Google Scholar 

  168. Sanders GJ, Ziaja D, Kottmann J (2002) Cost-efficient beneficiation of coal by ROM-JIGs and BATAC Jigs. Coal Prep (London, UK 22: 181–197

    Article  Google Scholar 

  169. Yang DC, Bozzato P (2003) Multi-cell jigging for fine coal cleaning. Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems 28th: 881– 892

    Google Scholar 

  170. Anuprienko TA, Nikitin IN (1996) Methods for preparing and monitoring of heavy media in coal beneficiation. Obogashchenie Rud (Sankt-Peterburg): 11–12

    Google Scholar 

  171. Atwood GA, Leehe HH (1992) Perchloroethylene coal beneficiation. Coal Prep (London, UK) 11: 77–86

    Google Scholar 

  172. Cho H, Klima MS (1994) Application of a batch hindered-settling model to dense-medium separations. Coal Preparation (London, UK) 14: 167–185

    Article  Google Scholar 

  173. Dardis, K.A The design and operation of heavy medium recovery circuits for improved medium recovery, Coal Prep (London, UK) 7: 119–157 (1989)

    Google Scholar 

  174. de Korte GJ (2002) Dense-medium beneficiation of fine coal revisited. Symposium Series — South African Institute of Mining and Metallurgy. S29: 43–46

    Google Scholar 

  175. de Korte GJ (2003) Comments on the use of tracers to test dense-medium plant efficiency, Coal Preparation (Philadelphia, PA, USA) 23: 251–266

    Google Scholar 

  176. Honaker RQ, Singh N (1999) The application of dense medium in an enhanced gravity separator for fine coal cleaning. Proceedings — Annual International Pittsburgh Coal Conference 16th: 1737–1754

    Google Scholar 

  177. Honaker RQ, Singh N, Govindarajan B (2000) Application of dense-medium in an enhanced gravity separator for fine coal cleaning. Mineral Eng 13: 415–427

    Article  Google Scholar 

  178. Kalabukhov ML, Glukhikh SG (2002) Technology and techniques for coal benefici-ation in heavy-medium. Koks i Khimiya: 5–9

    Google Scholar 

  179. Miller GM (1989) Design of medium recovery and heavy medium management circuits — a different approach. Coal Prep (London, UK) 7: 175–182

    Google Scholar 

  180. Senftle FE, Thorpe AN, Davis D, Glasgow V, Akers D (1994) Determination of magnetite in dense-medium coal cleaning plants by the use of a Davis Tube. Coal Prep (London, UK) 14: 185–197

    Google Scholar 

  181. Klima MS, Luckie PT (1990) Use of an unsteady-state pulp-partition model to investigate variable interactions in dense-medium separators. Coal Prep (London, U K) 8: 185–193

    Article  Google Scholar 

  182. van Dyk JC (2003) Effect of coal particle size and dense medium beneficiation on yields, carbon and sulphur content of Secunda coal. Proceedings — Annual International Pittsburgh Coal Conference 20th: 1909

    Google Scholar 

  183. Barraza JM, Caicedo MR, Botache CA (2000) Colombian coals beneficiation using hydrocyclone separation. Proceedings — Annual International Pittsburgh Coal Conference 17th: 2167–2175

    Google Scholar 

  184. Blaschke Z (2000) Evolution of the effectiveness of beneficiation and desulfurization of coal slurries in spiral concentrators. Inzynieria Mineralna 1: 33–36

    Google Scholar 

  185. Firth B, O'Brien M (2003) Hydrocyclone circuits. Coal Prep (Philadelphia, PA, USA) 23: 167–183

    Google Scholar 

  186. Hornsby DT, Watson SJ, Clarkson CJ (1993) Fine coal cleaning by spiral and water washing cyclone. Coal Prep (London, UK) 12: 133–161

    Google Scholar 

  187. Hredzak S (1999) Selected results of Slovak steam coal preparation in hydrocyclones. Gospodarka Surowcami Mineralnymi 15: 221–228

    Google Scholar 

  188. Jakabsky S, Lovas M, Hredzak SR, Turcaniova L (1998) Application of water only cyclone in Slovak steam coal preparation. Proceedings — Annual International Pittsburgh Coal Conference 15th: 1600–1607

    Google Scholar 

  189. Jenkins KA, He DX, Gargis AL, Chiang SH (1994) Development and use of a Taylor-vortex column for fine coal cleaning. Adv Filtrat Sep Technol 8: 444–447

    Google Scholar 

  190. Yang J, Zhang W, Wang Y (1999) Coal desulphurization by cyclonic whirl. Proceedings — Annual International Pittsburgh Coal Conference 16th: 46–51

    Google Scholar 

  191. Andrews GF, Noah KS (1997) The slurry-column coal beneficiation process. Fuel Process Technol 52: 247–266

    Article  Google Scholar 

  192. Angadi SI, Suresh N (2005) A kinetic model for the prediction of water reporting to the froth products in batch flotation. Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy 114: C225– C232

    Article  Google Scholar 

  193. Arnold BJ (2000) The ‘Grab and Run’ revisited — improving selectivity between organic and inorganic components in conventional coal froth flotation. Int J Mineral Process 58: 119–128

    Article  Google Scholar 

  194. Attia YA, Conkle HN, Krishnan SV (1984) Selective flocculation coal cleaning for coal slurry preparation. Coal Slurry Combust Int Symp 6th: 571–597

    Google Scholar 

  195. Attia YA, Yu S, Vecci S (1987) Selective flocculation cleaning of Upper Freeport coal with a totally hydrophobic polymeric flocculant. Process Technol Proc 4: 547–564

    Google Scholar 

  196. Behl S, Moudgil BM (1992) Fine coal cleaning by selective flocculation. Coal Prep (London, UK) 11: 35–49

    Google Scholar 

  197. Bennett AJ, Bustamante RH, Shibaoka M, Telfer A, Warren LJ, Woods G (1983) Coal cleaning by flotation. Dev Demonstration Counc Natl Energy Res, Canberra, Australia: 149

    Google Scholar 

  198. Bhattacharya S, Roy J, Sinha S (2002) Effect of seasonal variation of temperature on coal flotation. Symposium Series — South African Institute of Mining and Metallurgy S29: 359–364

    Google Scholar 

  199. Borts MA, Bochkov YN, Ryabchenko AN (1990) New flocculants for the coal industry. Perspekt. Napravleniya Nauch. Issled. po Razvitiyu Obogashch. Uglei. Kompleks. N-i. i Proekt.-Konstr. In-t Obogashch. Tverd. Goryuch. Iskop (IOTT) Lyubertsy: 128– 139

    Google Scholar 

  200. Zhu H, Yang J, Shen Y, Ou Z, Zhao Y (1999) Coal desulfurization in flotation by electrochemical control. Proceedings — Annual International Pittsburgh Coal Conference 16th: 52–55

    Google Scholar 

  201. Yoon RH, Luttrell GH, Adel GT, Mankosa MJ (1992) The application of Microcel column flotation to fine coal cleaning. Coal Prep (London, UK) 10: 177–188

    Google Scholar 

  202. Yang DC (1984) Static tube flotation for fine coal cleaning. Coal Slurry Combust Int Symp 6th: 582–597

    Google Scholar 

  203. Yang DC (1990) Packed-bed column flotation of fine coal. Part II. Technical-economic feasibility and scale-up considerations. Coal Prep (London, UK) 8: 37–48

    Google Scholar 

  204. Yang DC (1990) Packed-bed column flotation of fine coal. Part I. Laboratory tests and flotation circuit design. Coal Prep (London, UK) 8: 19–36

    Google Scholar 

  205. Sun J, Long Z, Wang J, Fan Z (2002) Application of flotation reagent emulsion station in coal cleaning production. Xuanmei Jishu: 28–29

    Google Scholar 

  206. Song S, Zhang Y, Wu K, Lopez-Valdivieso A, Lu S (2004) Flotation of coal fines as hydrophobic flocs for ash rejection. J Dispers Sci Technol 25: 75–81

    Article  Google Scholar 

  207. Polat H, Chander S (1995) Improved efficiency of coal cleaning using a flotation-regrinding-flotation process. Processing of Hydrophobic Minerals and Fine Coal, Proceedings of the UBC-McGill Bi-Annual International Symposium on Fundamentals of Mineral Processing, 1st, Vancouver, BC, Aug. 20–24, 1995: 179–189

    Google Scholar 

  208. Petukhov VN (1986) Improvement of technology for flotation of coals using modifier reagents. Flotatsionnye Reagenty: 201–203

    Google Scholar 

  209. Parekh BK, Bland AE, Groppo JG, Yingling J (1990) A parametric study of column flotation for fine coal cleaning. Coal Prep (London, UK) 8: 49–60

    Google Scholar 

  210. Parekh BK, Groppo JG, Datta RS (1992) A column flotation technique for cleaning ultra-fine coal. Adv Filtrat Sep Technol 5: 130–136

    Google Scholar 

  211. Ofori P, O'Brien G, Firth B, Jenkins B (2005) Flotation diagnostics and modeling by coal grain analysis. Publications of the Australasian Institute of Mining and Metallurgy 5/2005: 769–774

    Google Scholar 

  212. Ofori P, O'Brien G, Firth B, Jenkins B (2006) Flotation process diagnostics and modelling by coal grain analysis. Minerals Eng 19: 633–640

    Article  Google Scholar 

  213. Munirathinam M, Groppo JG, Parekh BK, Cleaning of coal using an integrated grind-ing-flotation column system. Fuel Sci Technol 13: 119–129

    Google Scholar 

  214. Luttrell GH, Yoon RH, (1994) Commercialization of the Microcel column flotation technology. Proceedings — Annual International Pittsburgh Coal Conference 11th: 1503– 1508

    Google Scholar 

  215. Lalvani SB (1990) Coal flotation and flocculation in the presence of humic acids. Final report, January 1, 1989–August 31, 1990, Dep. Mech. Eng. Energy Process, South Illinois Univ Carbondale, IL, USA

    Google Scholar 

  216. Kawatra SK, Eisele TC (1995) Baffled-column flotation of a coal plant fine-waste stream. Minerals Metallurg Process 12: 138–142

    Google Scholar 

  217. Kawatra SK, Eisele TC, Baffled-column flotation of a coal plant fine-waste stream. Transactions of Society for Mining, Metallurgy, and Exploration, Inc. 298: 138– 142/Section 133

    Google Scholar 

  218. Davis VL Jr, Bethell PJ, Stanley F, Luttrell GH, Mankosa MJ, Yoon RH, (1993) Application of Microcel column flotation technology for fine coal recovery. Proceedings — Annual International Pittsburgh Coal Conference 10th: 90–96

    Google Scholar 

  219. Firth BA (1999) Australian coal flotation practice, Advances in Flotation Technology. Proceedings of the Symposium Advances in Flotation Technology held at the SME Annual Meeting, Denver, Mar. 1–3, 1999: 289–307

    Google Scholar 

  220. Hasuda T, Ogawa K, Arai S (1991) Advanced coal cleaning-deashing and desulfuriza-tion of coal by microbubble column flotation. Sekitan Riyo Gijutsu Kaigi Koenshu 1st: 254–263

    Google Scholar 

  221. Humeres E, Debacher NA (2002) Kinetics and mechanism of coal flotation. Colloid Polym Sci 280: 365–371

    Article  Google Scholar 

  222. Kikkawa H, Takezaki H, Ootani Y, Shoji K (1988) Preparation of clean coal and water mixtures by efficient froth flotation. Kagaku Kogaku Ronbunshu 14: 755–761

    Google Scholar 

  223. Lehmkuhl J, Seifert G (1985) New aspects of the use of flocculants in coal preparation. Aufbereitungs Technik (1960–1989) 26: 645–651

    Google Scholar 

  224. Rubinstein JB, Linev BI, Hall ST (1998) Multisectional flotation column in coal preparation. Innovations in Mineral and Coal Processing, Proceedings of the International Mineral Processing Symposium, 7th, Istanbul, September 15–17, 1998: 345–350

    Google Scholar 

  225. Sekine OY, Sato D, Yamaguchi D, Kikuchi E, Matsukata M (2001) Effect of the distribution of hydrophilicity/hydrophobicity of coal on column flotation results. Sekitan Kagaku Kaigi Happyo Ronbunshu 38th: 307–310

    Google Scholar 

  226. Venkatadri R, Markuszewski R, Wheelock TD, Walters AB (1989) Flocculation of coal and mineral particles with a polyanionic biopolymer. Coal Prep (London, UK) 6: 207–225

    Google Scholar 

  227. Kawatra SK, Eisele TC (2001) Coal Desulfurization: High Efficiency Preparation Methods. Taylor & Francis

    Google Scholar 

  228. Shah CL, MacNamara L, Miles NJ, Hall ST (1997) Optimizing spiral separators and froth flotation in fine coal preparation circuits. DGMK Tagungsbericht 9702: 527–530

    Google Scholar 

  229. Zeilinger JE, Deurbrouck AW (1976) Physical desulfurization of fine-size coals on a spiral concentrator. US Bur Mines, Rep Invest RI 8152

    Google Scholar 

  230. Mellor GH (1979) Using Humphreys spirals for recovery of minus 4 mesh coal. Papers presented before the Symposium on Coal Preparation and Utilization: 35–41

    Google Scholar 

  231. Alexis J (1980) Cleaning coal and refuse fines with the Humphreys spiral concentrator. Mining Engineering (Littleton, CO, USA) 32(8): 1224, 1226–1228

    Google Scholar 

  232. Richards RG, Hunter JL, Holland-Batt AB (1985) Spiral concentrators for fine coal treatment. Coal Prep (London, UK) 1(2): 207–229

    Google Scholar 

  233. Sivamohan R, Forssberg E (1985) Principles of spiral concentration. Int J Mineral Process 15(3): 173–81

    Article  Google Scholar 

  234. Davies POJ, Goodman RH, Deschamps JA (1991) Recent developments in spiral design, construction and application. Miner Eng 4(3–4): 437–456

    Article  Google Scholar 

  235. Subasinghe GKNS, Kelly EG (1991) Model of a coal washing spiral. Coal Prep (London, UK) 9(1–2): 1–11

    Google Scholar 

  236. King RP, Juckes AH, Stirling PA (1992) A quantitative model for the prediction of fine coal cleaning in a spiral concentrator. Coal Prep (London, UK) 11(1–2): 51–66

    Google Scholar 

  237. Bohle B (1994) Environmental applications of spiral concentrators in Europe. Prog Miner Process Technol Proc Int Miner Process Symp 5th: 65–70

    Google Scholar 

  238. Honaker RQ, Wang D, Ho K (1996) Application of the Falcon Concentrator for fine coal cleaning. Miner Eng 9(11): 1143–1156

    Article  Google Scholar 

  239. Blaschke Z (2000) Evolution of the effectiveness of beneficiation and desulfurization of coal slurries in spiral concentrators. Inzynieria Mineralna 1(2): 33–36

    Google Scholar 

  240. Lalvani SB (1989) Coal flotation and flocculation in the presence of humic acids. Final report, January 1–December 31, 1988. DOE/PC/88861-T6; Order No. DE89009573

    Google Scholar 

  241. Jessop RR, Stretton JL (1969) Electrokinetic measurements on coal and a criterion for its hydrophobicity. Fuel 48(3): 317–320

    Google Scholar 

  242. Yoon RH, Luttrell GH (1995) Advanced froth flotation techniques for fine coal cleaning, Coal Fines: The Unclaimed Fuel. Annual Technical Conference 20th, Clearwater, Fl. March 20–23, 1995: 65–75

    Google Scholar 

  243. Meenan GF (1999) Modern coal flotation practices. Advances in flotation technology. Proceedings of the Symposium Advances in Flotation Technology held at the SME Annual Meeting, Denver, March 1–3, 1999: 309–319

    Google Scholar 

  244. Li B, Tao D, Ou Z, Liu J (2003) Cyclo-microbubble column flotation of fine coal. Sep Sci Technol 38: 1125–1140

    Article  Google Scholar 

  245. Lai R (2002) Cyclonic flotation column for minerals beneficiation. Mining Eng (Littleton, CO, USA) 54: 51–52

    Google Scholar 

  246. Honaker RQ, Mohanty MK (1996) Enhanced column flotation performance for fine coal cleaning. Miner Eng 9: 931–945

    Article  Google Scholar 

  247. Feris LA, De Leon AT, Santander M, Rubio J (2004) Advances in the adsorptive par-ticulate flotation process. International J Miner Process 74: 101–106

    Article  Google Scholar 

  248. Feris LA, Souza ML, Rubio J (2002) Sorption of Heavy Metals on a Coal Bene-ficiation Tailing Material: II. Adsorptive Particulate Flotation. Coal Prep (London, UK) 22: 235–248

    Google Scholar 

  249. Shevchenko TV, Osadchii VL, Yakovchenko MA, Ul'rikh EV (2004) Use of super-high-molecular-weight flocculants in coal beneficiation processes. Khimicheskaya Pro-myshlennost Segodnya: 38–41

    Google Scholar 

  250. Agus M, Carbini P, Ciccu R, Ghiani M (1990) Triboelectric coal cleaning and desulfu-rization with the turbocharger separator. Coal Sci Technol 16: 311–320

    Google Scholar 

  251. Baek SH, Jeon HS, Han OH (2005) Development of new techniques of electrostatic separation for using of clean coal. Chawon Rissaikuring 14: 54–61

    Google Scholar 

  252. Ban H, Schaefer JL, Saito K, Stencel JM (1994) Particle tribocharging characteristics relating to electrostatic dry coal cleaning. Fuel 73: 1108–1113

    Article  Google Scholar 

  253. Ban H, Schaefer JL, Stencel JM (1993) Size and velocity effects on coal particle tribo-electrification and separation efficiency. Proceedings — Annual International Pittsburgh Coal Conference 10th: 138–143

    Google Scholar 

  254. Baek SH, Jeon HS, Han OH (2005) Development of new techniques of electrostatic separation for using of clean coal. Chawon Rissaikuring 14: 54–61

    Google Scholar 

  255. Finseth D, Newby T, Elstrodt R (1993) Dry electrostatic separation of fine coal. Coal Sci Technol 21: 91–98

    Google Scholar 

  256. Lewowski T (1990) Electrostatic desulfurization of hard steam coals. Mater Sci 16: 55–59

    Google Scholar 

  257. Masuda S, Toraguchi M, Takahashi T, Haga K (1981) Electrostatic beneficiation of coal using a cyclone-tribocharger. Conference Record — IAS Annual Meeting: 1001– 1005

    Google Scholar 

  258. Mazumder MK, Tennal KB, Lindquist D (1994) Electrostatic beneficiation of coal. Annual Coal Preparation, Utilization, and Environmental Control Contractors Conference, Proceedings, 10th, Pittsburgh, July 18–21, 1994 1: 111–116

    Google Scholar 

  259. Mills O Jr, Chen ZY (1993) Electrostatic coal beneficiation — potential applications and research needs. Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems 18th: 577–589

    Google Scholar 

  260. Wang FX (1993) Dry fine coal beneficiation utilizing open-system triboelectrostatic separator. Proceedings — Annual International Pittsburgh Coal Conference 10th: 211– 216

    Google Scholar 

  261. Klima MS, Polat M, Chander S, Ahuja G (1994) An integration of dense-medium cyc-loning and froth flotation for fine-coal cleaning. Proceedings — Annual International Pittsburgh Coal Conference 11th: 1267–1272

    Google Scholar 

  262. Lathioor RA, Osborne DG (1984) Dense medium cyclone cleaning of fine coal. Hy-drocyclones. Pap Int Conf 2nd: 233–252

    Google Scholar 

  263. Qi Z (2003) Review on coal cleaning by dense medium cyclone, Xuanmei Jishu: 19–25

    Google Scholar 

  264. Turek ML, Klima MS (2003) Dense-medium cycloning of fine coal refuse material. Coal Prep (Philadelphia, PA, USA) 23: 267–284

    Google Scholar 

  265. Zalar JL (1983) Evaluation of low gravity dense media cyclone performance in cleaning fine coal. Bitum Coal Res Inc Monroeville, PA, USA

    Google Scholar 

  266. Murty MVS, Bhattacharyya D, Aleem MIH (1994) Recent advances in bioprocessing of coal. Biol Degrad Biorem Toxic Chem: 470–492

    Google Scholar 

  267. Bos P, Boogerd FC, Gijs KJ (1992) Microbial desulfurization of coal. Environ Micro-biol 375–403

    Google Scholar 

  268. Khalid AM, Aleem MIH, Kermode RI, Bhattacharrya D (1989) Bioprocessing of coal and oil-water emulsions and microbial metabolism of dibenzothiophene (DBT). Proc — Bioprocess. Fossil Fuels Workshop, CONF-890884--DE90 007955: 55–78

    Google Scholar 

  269. Khalid AM, Bhattacharyya D, Hsieh M, Kermode RI, Aleem MIH (1990) Biological desulfurization of coal. Coal Sci Technol 16 (Process Util High-Sulfur Coals 3): 469– 480

    Google Scholar 

  270. Isbister JD, Wyza RE, Lippold J, DeSouza A, Anspach G (1988) Bioprocessing of coal. Basic Life Sci 45 (Environ Biotechnol): 281–293

    Google Scholar 

  271. Olson GJ, Brinckman FE (1986) Bioprocessing of coal. Fuel 65(12): 1638–1646

    Article  Google Scholar 

  272. Stambaugh EP (1977) Hydrothermal coal process. ACS Symp Ser 64 (Coal Desulfuri-zation) 198–205

    Google Scholar 

  273. Stambaugh EP, Levy A, Giammar RD, Sekhar KC (1976) Hydrothermal coal desulfu-rization with combustion results. Energy Environ (Dayton) 4: 386–394

    Google Scholar 

  274. Wang Z-C, Shui H-F, Zhang D-X, Gao J-S (2006) Effect of hydrothermal treatment on coal properties of Shenhua, China. Ranliao Huaxue Xuebao 34(5): 524–529

    Google Scholar 

  275. Ross DS, Hirschon AS, Tse DS, Loo BH (1990) The effects of hydrothermal treatment on Wyodak coal. Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 35(2): 352–363

    Google Scholar 

  276. Ito M, Ando T, Yamashita T, Shinozaki S (2001) Removal of alkali and alkaline earth metals for hyper coal production. Sekitan Kagaku Kaigi Happyo Ronbunshu 38th 239–242

    Google Scholar 

  277. Smith CD (1979) Coal cleaning by the Otisca Process. Otisca Ind Ltd LaFayette, NY, USA: 623–636

    Google Scholar 

  278. Simmons FJ, Keller DV Jr (1984) Heavy-liquid beneficiation of fine coal, Phase II. Final report, OTISCA Ind Ltd Syracuse, NY, USA

    Google Scholar 

  279. Keller DV Jr, Simmons FJ (1983) Heavy-liquid beneficiation of fine coal. OTISCA Ind Ltd, Syracuse, NY, USA

    Google Scholar 

  280. Keller DV Jr, Simmons FJ (1983) Heavy-liquid beneficiation of fine coal. OTISCA Ind. Ltd Syracuse, NY, USA

    Google Scholar 

  281. Chi SM, Morsi BI, Klinzing GE, Chiang SH (1989) LICADO process for fine coal cleaning — mechanism. Coal Prep (London, UK) 6: 241–263

    Google Scholar 

  282. Chiang SH, Klinzing GE, He DX, Feng YR, Yu SN, Jenkins K, Diffendal G (1994) Update of the LICADO coal cleaning process. Annual Coal Preparation, Utilization, and Environmental Control Contractors Conference, Proceedings, 10th, Pittsburgh, July 18–21, 1994 1: 67–74

    Google Scholar 

  283. He DX, Araujo G, Morsi B, Klinzng G, Venkatadri R, Chiang SH, Cooper MH (1989) Development of the Licado coal cleaning process. Proceedings — Annual International Pittsburgh Coal Conference 6th: 882–889

    Google Scholar 

  284. He DX, Araujo G, Morsi BI, Klinzing GE, Venkatadri R, Chiang SH (1990) Application of Licado process to high-sulfur bituminous coals. Coal Sci Technol 16: 247–253

    Google Scholar 

  285. Jenkins KA (1997) Using fuzzy logic and genetic algorithms to model the LICADO separation process (coal): 223

    Google Scholar 

  286. Feng YR, He DX, Chiang SH, Klinzing GE, Mulik PR, Yang WC (1994) Further study of the LICADO coal cleaning process. Proceedings-Annual International Pittsburgh Coal Conference 11th: 582–587

    Google Scholar 

  287. Cooper MH, Muenchow HO, Chiang SH, Klinzing GE, Morsi B, Venkatadri R (1990) The LICADO coal cleaning process: a strategy for reducing sulfur dioxide emissions from fossil-fueled power plants. Proceedings of the Intersociety Energy Conversion Engineering Conference 25th: 137–142

    Google Scholar 

  288. Alonso MI, Valdes AF, Martinez-Tarazona RM, Garcia AB (1999) Coal recovery from coal fines cleaning wastes by agglomeration with vegetable oils: effects of oil type and concentration. Fuel 78: 753–759

    Article  Google Scholar 

  289. Bandopadhyay P (1984) Oil agglomeration-the emerging technique for fine coal ben-eficiation. Urja 16: 377–380, 384

    Google Scholar 

  290. Baruah MK, Kotoky P, Baruah J, Bora GC (2000) Cleaning of Indian coals by agglomeration with xylene and hexane. Sep Purif Technol 20: 235–241

    Article  Google Scholar 

  291. Capes CE, Coleman RD, Thayer WL (1981) Selective oil agglomeration: an answer to fine coal treatment problems. Coal: Phoenix ′80s, Proc. CIC Coal Symp 64th 1: 209–216

    Google Scholar 

  292. Carbini P, Ciccu R, Ghiani M, Satta F, Tilocca C (1996) Oil agglomeration using water jets, Changing Scopes in Mineral Processing. Proceedings of the International Mineral Processing Symposium, 6th, Kusadasi, Turk September 24–26, 1996: 693–698

    Google Scholar 

  293. Choi WZ, Chung HS, Yang JI, Kim SB (1992) Shear coagulation process for selective upgrading of ultrafine coals. Han'guk Chawon Konghak Hoechi 29: 165–171

    MATH  Google Scholar 

  294. Honaker RQ, Yoon RH, Luttrell GH (2005) Ultrafine coal cleaning using selective hydrophobic coagulation. Coal Prep (Philadelphia, PA, USA) 25: 81–97

    Google Scholar 

  295. Kim S, Morsi BI, Araujo G, Chiang SH, Blachere J, Sharkey A (1991) Effect of grinding conditions on the performance of a selective agglomeration process for physical coal cleaning. Coal Prep (London, UK) 9: 141–153

    Google Scholar 

  296. Mang JT, Oder RR (1990) Coal beneficiation by electrostatic coalescence. Coal Sci Technol 16: 341–350

    Google Scholar 

  297. Mukherjee DK, Das SK, Sanyal JM, Rudra SR, Choudhury DP, Jha GS, Chat-topadhyay PC (1991) An integrated concept for chemical comminution and selective agglomeration of coal. Fuel Sci Technol 10: 113–114

    Google Scholar 

  298. Shen M, Wheelock TD (2000) Coal agglomeration with microbubbles. Coal Prep (Gordon & Breach) 21: 277–298

    Article  Google Scholar 

  299. Shen M, Wheelock TD (2001) Development and scale-up of a gas-promoted oil agglomeration process for coal beneficiation. Minerals Metallurg Process 18: 87–94

    Google Scholar 

  300. Skarvelakis C, Hazi M, Antonini G (1995) Investigations of coal purification by selective oil agglomeration. Sep Sci Technol 30: 2519–2538

    Article  Google Scholar 

  301. Song S, Haidari S, Trass O (1995) Flotation of oil-agglomerated coal for ash and py-rite removal. Processing of Hydrophobic Minerals and Fine Coal, Proceedings of the UBC-McGill Bi-Annual International Symposium on Fundamentals of Mineral Processing, 1st, Vancouver, B. C August 20–24, 1995: 223–234

    Google Scholar 

  302. Song S, Perkson A, Trass O (1996) Flotation of oil-agglomerated coal for ash and py-rite removal-simultaneous grinding and agglomeration. Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems 21st: 339–351

    Google Scholar 

  303. Sparks BD, Farnand JR, Capes CE (1982) Agglomerative separations in organic media. J Sep Process Technol 3: 1–15

    Google Scholar 

  304. Szymocha K (2003) Industrial applications of the agglomeration process. Powder Technol 130: 462–467

    Article  Google Scholar 

  305. Trass O, Bajor O (1984) Improved oil agglomeration process for coal beneficiation. Coal Slurry Combust Int. Symp 6th: 639–648

    Google Scholar 

  306. Uenal I, Ersan MG (2007) Factors Affecting the Oil Agglomeration of Sivas-Divrigi Ulucayir Lignite. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29: 983–993

    Article  Google Scholar 

  307. Yang Q, Liu L, Shi X (2001) Research on the deashing agent during selective oil agglomeration. Proceedings — Annual International Pittsburgh Coal Conference 18th: 2891–2897

    Google Scholar 

  308. Rahmani AA (1996) Spherical oil agglomeration (SOA)/colloidal gas aphrons (CGA) flotation. Int J Eng 9: 211–220

    Google Scholar 

  309. Silva-Stenico ME, Vengadajellum CJ, Janjua HA, Harrison STL, Burton SG, Cowan, DA (2007) Degradation of low rank coal by Trichoderma atroviride ES11. J Indus Mi-crobiol Biotechnol 34(9): 625–631

    Article  Google Scholar 

  310. Shimizu K, Kawashima H (1999) Comparison of superacid-catalyzed depolymeriza-tion and thermal depolymerization of bituminous coal-catalysis by superacid HF/BF3 and synthetic pyrite. Energy Fuels 13(6): 1223–1229

    Article  Google Scholar 

  311. Shimizu K, Saito I (1998) Depolymerization of subbituminous coal under mild conditions in the presence of aromatic hydrocarbon with recyclable superacid HF/BF3. Energy Fuels 12(1): 115–119

    Article  Google Scholar 

  312. Hofrichter M, Ziegenhagen D, Sorge S, Bublitz F, Fritsche W (1997) Enzymic de-polymerization of low-rank coal (lignite) DGMK Tagungsbericht 9704 Proceedings ICCS ′97 3: 1595–1598

    Google Scholar 

  313. Hofrichter M, Ziegenhagen D, Sorge S, Ullrich R, Bublitz F, Fritsche W (1999) Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system. Appl Microbiol Biotechnol 52(1): 78–84

    Article  Google Scholar 

  314. Tomita K, Isoda T, Kusakabe K, Morooka S, Hayashi J (1996) Depolymerization of coal by oxidation and alkylation. Sekitan Kagaku Kaigi Happyo Ronbunshu 33rd 323–326

    Google Scholar 

  315. Shimizu K, Miki K, Saito I (1997) Superacid-catalyzed depolymerization of several coal model compounds and subbituminous coal: catalysis by trifluoromethanesulfonic acid. Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems 22nd 59–69

    Google Scholar 

  316. Sakanishi K, Honda K, Mochida I, Okuma O (1993) Coal pretreatments for deminer-alization and acceleration of depolymerization. Proceedings — Annual International Pittsburgh Coal Conference 10th: 198–203

    Google Scholar 

  317. Silva-Stenico ME, Vengadajellum CJ, Janjua HA, Harrison STL, Burton SG, Cowan DA (2007) Degradation of low rank coal by Trichoderma atroviride ES11. J Indus mi-crobiol Biotechnol 34(9): 625–631

    Article  Google Scholar 

  318. Hessley RK (1985) Co-oxidative depolymerization of coal. EPRI-AP-4105 Order No. TI85920721

    Google Scholar 

  319. Mastral AM, Membrado L, Rubio B (1988) Depolymerization as a pretreatment in coal liquefaction. Proceedings — Annual International Pittsburgh Coal Conference 5th 605–612

    Google Scholar 

  320. Shabtai J, Zhang Y, White R (1990) Recent progress in the development of a low-temperature coal depolymerization -liquefaction procedure. Proceedings — Annual International Pittsburgh Coal Conference 7th: 701–708

    Google Scholar 

  321. Lalvani SB (1992) Lignin-assisted coal depolymerization: Technical report, December 1, 1991–February 29, 1992. Report DOE/PC/91334-T62; Order No. De92018351

    Google Scholar 

  322. Kozlowski M (2001) Two-stage reduction and reductive alkylation of coal using deuterium-labelled modifying agents. Fuel 80(7): 937–943

    Article  Google Scholar 

  323. Kozlowski M, Wachowska H, Yperman, J (2003) Composition of extraction products from alkylated high-sulphur coals. Central Eur J Chem 1(4): 366–386

    Article  Google Scholar 

  324. Fujimaki T, Kato T, Yoneyama Y (1998) A study on mechanism of coal solubilization by alkylation. Sekitan Kagaku Kaigi Happyo Ronbunshu 35th: 23–26

    Google Scholar 

  325. Nosyrev IE, Cagniant D, Gruber R, Fixari B (1997) Influence of chemical treatments on the behavior of a bituminous coal in thermal analyses. Analusis 25(9–10): 313–318

    Google Scholar 

  326. Tomita K, Isoda T, Kusakabe K, Morooka S, Hayashi J (1996) Depolymerization of coal by oxidation and alkylation. Sekitan Kagaku Kaigi Happyo Ronbunshu 33rd: 323–326

    Google Scholar 

  327. Hayashi J, Kusakabe K, Morooka S (1993) Improvement of coal structure and reactivity by pretreatment. Nippon Enerugi Gakkaishi 72(5): 338–345.

    Google Scholar 

  328. Baldwin RM, Kennar DR, Nguanprasert O, Miller RL (1991) Liquefaction reactivity enhancement of coal by mild alkylation and solvent swelling techniques. Fuel 70(3): 429–433

    Article  Google Scholar 

  329. Chatterjee K, Miyake M, Stock LM (1990) Coal solubilization through C- alkylation. Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 35(1): 46–50

    Google Scholar 

  330. Miller RL, Armstrong ME, Baldwin RM (1989) The effect of mild alkylation pre-treatment on liquefaction reactivity of Argonne coals. Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 34(3): 873–880.

    Google Scholar 

  331. Stock LM (1987) Coal alkylation and pyrolysis. Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 32(1): 463–470

    Google Scholar 

  332. Stefanova MD, Lang I (1986) Fractionation of soluble portion of reductively alkylated bituminous coals. Collection of Czechoslovak Chemical Communications 51(5): 1071–1082

    Google Scholar 

  333. Bimer J, Witt I (1985) Reactivity in the reductive alkylation of coal. Koks Smola Gaz 30(1): 9–12

    Google Scholar 

  334. Kalra RL, Choudhury R, Sarkar MK (1982) Liquid-phase alkylation of Assam (Baragolai) coal. Fuel 61(12): 1286–1288

    Article  Google Scholar 

  335. Miyake M, Uematsu R, Nomura M (1984) High efficacy of ultrasound-promoted reductive alkylation of coal. Chem Lett (4): 535–538.

    Google Scholar 

  336. Liotta R, Rose K, Hippo E (1981) O-Alkylation chemistry of coal and its implications for the chemical and physical structure of coal. J Org Chem 46(2): 277–283

    Article  Google Scholar 

  337. Schlosberg RH, Neavel RC, Maa PS, Gorbaty ML (1980) Alkylation: a beneficial pretreatment for coal liquefaction. Fuel 59(1): 45–47

    Article  Google Scholar 

  338. Baldwin RM, Miller RL (1991) Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment: Final technical report. Report DOE/PC/88812-T15; Order No. DE93004915

    Google Scholar 

  339. Shams KG, Miller RL, Baldwin RM (1992) Enhancing low severity coal liquefaction reactivity by using mild chemical pretreatment. Fuel 71(9): 1015–23.

    Article  Google Scholar 

  340. Miller RL, Baldwin RM, Nguanprasert O, Kenner DR (1991) Effect of mild chemical pretreatment on liquefaction reactivity of Argonne coals. ACS Symp Ser 461(Coal Sci 2) 260–272

    Google Scholar 

  341. Miller RL, Shams K, Baldwin RM (1991) Mild coal pretreatment to enhance liquefaction reactivity. Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 36(1): 1–6

    Google Scholar 

  342. Sharma DK (1987) Chemical pretreatment of coals for enhanced solubilization (ex-tractability) and coal pyrolysis. J Sci Indus Res 46(5): 224–229

    Google Scholar 

  343. Schlosberg RH, Neavel RC, Maa PS, Gorbaty ML (1980) Alkylation: a beneficial pretreatment for coal liquefaction. Fuel 59(1): 45–47

    Article  Google Scholar 

  344. Agun N, Yagmur E, Simsek E, Togrul T (2005) The effect of swelling pretreatment on the coal liquefaction in Tetralin with microwave energy. Energy Sources 27(12): 1105–1115

    Article  Google Scholar 

  345. Yokoyama T, Sako T, Gao H, Kidena K, Nomura M, Murata S (2001) The effects of pretreatment on the rate of solvent swelling of single coal particles. Sekitan Kagaku Kaigi Happyo Ronbunshu 38th: 47–50

    Google Scholar 

  346. Onal Y, Akol S (2003) Influence of pretreatment on solvent — swelling and extraction of some Turkish lignites. Fuel 82(11): 1297–1304.

    Article  Google Scholar 

  347. Bai J, Wang Y, Hu H, Guo S, Chen G (2000) Effect of swelling pretreatment on pyro-lysis and liquefaction characteristics of Zalainuer lignite. Meitan Zhuanhua 23(4): 50–54

    Google Scholar 

  348. Hu HQ, Sha GY, Guo SC (1997) Swelling pretreatment of coal for improved liquefaction at less severe conditions. DGMK Tagungsbericht 9704 (Proceedings ICCS ’97, Volume 3) 1465–1468

    Google Scholar 

  349. Pinto F, Gulyurtlu I, Lobo LS, Cabrita I (1999) Effect of coal pre-treatment with swelling solvents on coal liquefaction. Fuel 78(6): 629–634

    Article  Google Scholar 

  350. Mae K, Inoue S, Miura K (1996) Flash Pyrolysis of Coal Modified through Liquid Phase Oxidation and Solvent Swelling. Energy Fuels 10(2): 364–70

    Article  Google Scholar 

  351. Torres-Ordonez RJ, Quinga EM, Cronauer DC (1993) Solvent and pretreatment effects on coal swelling. Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 38(3): 1039–1044

    Google Scholar 

  352. Artok L, Davis A, Mitchell GD, Schobert HH (1992) Swelling pretreatment of coals for improved catalytic liquefaction. Fuel 71(9): 981–991

    Article  Google Scholar 

  353. Hulston CKJ, Redlich PJ, Jackson WR, Larkins FP, Marshall M (1997) Hydrogenation of a brown coal pretreated with water-soluble nickel/molybdenum and cobalt/ molybdenum catalysts. Fuel 76(14/15): 1465–1469

    Article  Google Scholar 

  354. Luo D, Liu J (2005) Organic sulfur removal from coal in alkaline system by electrolysis. Mei Huagong 33(3): 29–31, 62

    Google Scholar 

  355. Zhao W, Zhu H, Yan X-h (2003) Organic sulfur removal from coal by copper chloride oxidation and tetrachloroethylene extraction. Ranliao Huaxue Xuebao 31(5): 390–394

    Google Scholar 

  356. Li D-x, Gao J-s, Yue G-x, Lu J-f (2002) Mechanism of organic sulfur removal from coal by electrolysis. Ranshao Kexue Yu Jishu 8(5): 421–425

    Google Scholar 

  357. Sugawara K, Abe K, Sugawara T (1995) Organic sulfur removal from coal by rapid pyrolysis with alkali leaching and density separation. Coal Sci Technol 24 (Coal Science, Vol. 2): 1709–1712

    Google Scholar 

  358. Runnion K, Combie JD (1993) Organic sulfur removal from coal by microorganisms from extreme environments. FEMS Microbiol Rev 11(1–3): 139–144

    Article  Google Scholar 

  359. Vishnubhatt P, Lee S (1993) Effect of filtration temperature on organic sulfur removal from coal by perchloroethylene coal cleaning process. Fuel Sci Technol Int 11(8): 1081–1093

    Google Scholar 

  360. Vishnubhatt P, Thome T, Lee S (1993) Effect of pyritic sulfur and mineral matter on organic sulfur removal from coal. Fuel Sci Technol Int 11(7): 923–936.

    Google Scholar 

  361. Wapner PG, Lalvani SB, Awad G (1988) Organic sulfur removal from coal by electrolysis in alkaline media. Fuel Process Technol 18(1): 25–36

    Article  Google Scholar 

  362. Joshi JB, Shah YT (1981) Kinetics of organic sulfur removal from coal by oxydesulfu-rization. Fuel 60(7): 612–614

    Article  Google Scholar 

  363. TRW Space and Technology Group (1985) Development of a microwave coal cleaning process. Energy Div Redondo Beach, CA, USA

    Google Scholar 

  364. TRW Space and Technology Group (1986) Development of a microwave coal cleaning process. Appl Technol Div Redondo Beach, CA, USA

    Google Scholar 

  365. Kusakabe K, Morooka S, Aso S (1988) Chemical coal cleaning with molten alkali hydroxides in the presence of microwave radiation. Fuel Process Technol 19: 235–242

    Article  Google Scholar 

  366. Gunasekaran S, Mutunayagam S (2003) Sulphur reduction in coal by microwave treatment and its spectral analysis. Indian J Environ Protect 23: 188–194

    Google Scholar 

  367. Acharya C, Kar RN, Sukla LB (2001) Bacterial removal of sulphur from three different coals, Fuel 80: 2207–2216

    Article  Google Scholar 

  368. Gupta A, Saroj KK, Thakur DN (1977) Microbial desulfurization of pyritic coal. Chemical Era 13(8): 238–243

    Google Scholar 

  369. Detz CM, Barvinchak G (1979) Microbial desulfurization of coal. Mining Congr J 65(7): 75–82, 86

    Google Scholar 

  370. Kargi F, Robinson JM (1982) Microbial desulfurization of coal by thermophilic microorganism Sulfolobus acidocaldarius. Biotechnol Bioeng 24(9): 2115–2121

    Article  Google Scholar 

  371. Vaseen VA (1985) Commercial microbial desulfurization of coal. Coal Sci Technol 9 (Process. Util. High Sulfur Coals): 699–715.

    Google Scholar 

  372. Isbister JD, Kobylinski EA (1985) Microbial desulfurization of coal. Coal Sci Technol 9 (Process. Util. High Sulfur Coals) 627–641

    Google Scholar 

  373. Dugan PR (1986) Microbiological desulfurization of coal and its increased monetary value. Biotechnol Bioeng Symp 16 (Biotechnol. Min. Met.-Refin. Fossil Fuel Process. Ind.) 185–203

    Google Scholar 

  374. Kargi F, Weissman JG (1987) Kinetic parameter estimation in microbial desul-furization of coal. Biotechnol Bioeng 30(9): 1063–1066

    Article  Google Scholar 

  375. Eligwe CA (1988) Microbial desulfurization of coal. Fuel 67(4): 451–458

    Article  Google Scholar 

  376. Hoene HJ, Beyer M, Ebner HG, Klein J, Juentgen H (1987) Microbial desulfurization of coal — development and application of a slurry reactor. Chem Eng Technol 10(3): 173–179

    Article  Google Scholar 

  377. Kargi F (1990) Use of Sulfolobus acidocaldarius for microbial desulfurization of coal. Bioprocess Biotreat Coal: 603–605.

    Google Scholar 

  378. Ohmura N, Kitamura K, Saiki H (1992) Microbial desulfurization from coal. Bio Indus 9(2): 108–116

    Google Scholar 

  379. Ju LK (1992) Microbial desulfurization of coal. Fuel Sci Technol Int 10(8): 1251– 1290

    MathSciNet  Google Scholar 

  380. Bos P, Boogerd FC, Gijs KJ (1992) Microbial desulfurization of coal. Environ Micro-biol 375–403

    Google Scholar 

  381. Andrews GF, Dugan PR, McIlwain ME, Stevens CJ (1992) Microbial desulfurization of coal. Report EGG-2669; Order No. DE92008975

    Google Scholar 

  382. Olsson G, Pott B-M, Larsson L, Holst O, Karlsson HT (1994) Microbial desulfuriza-tion of coal by Thiobacillus ferrooxidans and thermophilic archaea. Fuel Process Technol 40(2+3): 277–282

    Article  Google Scholar 

  383. Klein J, van Afferden M, Pfeifer F, Schacht S (1994) Microbial desulfurization of coal and oil. Fuel Process Technol 40(2+3): 297–310

    Article  Google Scholar 

  384. Larsson L, Olsson G, Karlsson HT, Holst O (1994) Microbial desulfurization of coal with emphasis on inorganic sulfur. Biol Degrad Biorem Toxic Chem 493–505

    Google Scholar 

  385. Juszczak A, Domka F, Kozlowski M, Wachowska H (1995) Microbial desulfurization of coal with Thiobacillus ferrooxidans bacteria. Fuel 74(5): 725–728

    Article  Google Scholar 

  386. Raman VK, Pandey RA, Bal AS (1995) Reactor systems for microbial desulfurization of coal: an overview. Crit Rev Environ Sci Technol 25(3): 291–312

    Article  Google Scholar 

  387. Durusoy T, Bozdemir T, Yurum Y (1999) Recent advances in coal biodesulfurization. Rev Process Chem Eng 2(1): 39–52

    Google Scholar 

  388. Najafpour GD, Azizan A, Harun A (2002) Microbial desulfurization of Malaysian coal in batch process using mixed culture. Int J Eng, Trans B: Appl 15(3): 227–234.

    Google Scholar 

  389. Acharya C, Sukla LB, Misra VN (2004) Biodepyritisation of coal. J Chem Technol Biotechnol 79(1): 1–12

    Article  Google Scholar 

  390. Pandey RA, Raman VK, Bodkhe SY, Handa BK, Bal AS (2004) Microbial desul-phurization of coal containing pyritic sulphur in a continuously operated bench scale coal slurry reactor. Fuel 84(1): 81–87

    Article  Google Scholar 

  391. Choung J, Mak C, Xu Z (2005) Fine coal beneficiation using an air dense medium flu-idized bed. Coal Prep (Philadelphia, PA, USA) 26: 1–15

    Google Scholar 

  392. Luo Z, Chen Q (2001) Dry beneficiation technology of coal with an air dense-medium fluidized bed. Int J Miner Process 63: 167–175

    Article  Google Scholar 

  393. Luo Z, Zhao Y, Tao X, Fan M, Chen Q, Wei L (2003) Progress in dry coal cleaning using air-dense medium fluidized beds. Coal Prep (Philadelphia, PA, USA) 23: 13–20

    Google Scholar 

  394. Honaker RQ, Das A (2004) Ultrafine coal cleaning using a centrifugal fluidized-bed separator. Coal Prep (Philadelphia, PA, USA) 24: 1–18

    Google Scholar 

  395. Honaker RQ, Paul BC, Wang D, Huang M (1995) Application of centrifugal washing for fine-coal cleaning. Miner Metallurg Process 12: 80–84

    Google Scholar 

  396. Honaker RQ, Paul BC, Wang D, Huang M (1996) Application of centrifugal washing for fine-coal cleaning. Transactions of Society for Mining, Metallurgy, and Exploration, Inc. 298: 80–84/Section 83

    Google Scholar 

  397. Oshitani J, Tani K, Takase K, Tanaka Z (2004) Fluidized bed medium separation (FBMS) for dry coal cleaning. Funtai Kogaku Kaishi 41: 334–341

    Google Scholar 

  398. Sahan RA (1997) Coal cleaning performance in an air fluidized bed. Energy Sources 19: 475–492

    Google Scholar 

  399. Sahan RA, Kozanoglu B (1996) Use of an air fluidized bed separator in a dry coal cleaning process. Energy Conv Manag 38: 269–286

    Article  Google Scholar 

  400. Buttermore WH, Slomka BJ, Dawson MR (1988) Sonic enhancement of the physical cleaning of coal. Proceedings — Annual International Pittsburgh Coal Conference 5th: 431–443

    Google Scholar 

  401. Fairbanks HV, Morton W, Wallis J (1986) Separation processes aided by ultrasound. Filtration +Separation 23: 236–237

    Google Scholar 

  402. Calo JM, Hu X, Logan T, Choi D, Apicello J (2002) Coal cleaning via liquid-fluidized bed classification (LFBC) with selective particle modification. Preprints of Symposia — American Chemical Society, Division of Fuel Chemistry 47: 645–646

    Google Scholar 

  403. Calo JM, Hu X, Logan T, Choi D, Apicello J (2003) Coal cleaning via liquid-fluidized bed classification (LFBC) with selective particle modification. J Sep Sci 26: 1429– 1435

    Article  Google Scholar 

  404. Calo JM, Lilly WD, Hradil G, Mohsen P (1996) Separation of waste plastic particles via liquid-fluidized bed classification (LFBC) Adv Filtrat Sep Technol 10: 399–404

    Google Scholar 

  405. Chriswell CD, Kaushik SM, Shah ND, Markuszewski R (1989) Chemical cleaning of coal by molten caustic leaching after pretreatment by low-temperature devolatilization. US Patent 88-24499 4859212

    Google Scholar 

  406. Chriswell CD, Shah ND, Markuszewski R (1988) Recovery and regeneration of caustic for use in cleaning of coal by the molten caustic leaching process. Proceedings — Annual International Pittsburgh Coal Conference 5th: 446–459

    Google Scholar 

  407. Clements JL, Dadyburjor DB (1991) Hydrotreatment reactions with a disposable catalyst. Fuel 70: 747–751

    Article  Google Scholar 

  408. Contos GY, Frankel IF, McCandless LC (1978) Assessment of coal cleaning technology: an evaluation of chemical coal cleaning processes, Versar, Inc Springfield, VA, USA: 299

    Google Scholar 

  409. Hart WD (1982) Chemical coal cleaning. USA: 66–75

    Google Scholar 

  410. Maijgren B, Huebner W (1983) Coal cleaning by molten caustics. Proc. — Int. Conf. Coal Sci.: 256–259

    Google Scholar 

  411. McCormick RL, Jha MC (1995) Effect of Catalyst Impregnation Conditions and Coal Cleaning on Caking and Gasification of Illinois No. 6 Coal. Energy Fuels 9: 1043– 1050

    Article  Google Scholar 

  412. Meyers RA (1979) Introduction to chemical coal cleaning, TRW Syst Energy, Redondo Beach, CA, USA: 923–933

    Google Scholar 

  413. Nowak MA, Meyers RA (1993) Molten-caustic leaching (MCL) process integration. Coal Sci Technol 21: 305–315

    Google Scholar 

  414. Oder RR, Murthy BN, McGinnis EL (1983) Chemical coal cleaning assessments at Gulf. Sep SciTechnol 18: 1371–1393

    Article  Google Scholar 

  415. Oki T, Owada S, Harada T (1991) Research trend of chemical coal cleaning. Sekitan Riyo Gijutsu Kaigi Koenshu 1st: 147–160

    Google Scholar 

  416. Palmer SR, Hippo EJ, Dorai XA (1994) Chemical coal cleaning using selective oxidation. Fuel 73: 161–169

    Article  Google Scholar 

  417. Palmer ST (1991) Chemical coal cleaning using selective oxidation. Technical report March 1, 1991–May 31, 1991, South Illinois Univ Carbondale, IL, USA

    Google Scholar 

  418. Ruether JA (1979) Chemical coal cleaning. Combustion (New York, 1929) 51: 25

    Google Scholar 

  419. Sharma DK, Singh SK (1995) Advanced process for the production of clean coal by chemical leaching technique. Energy Sources 17: 485–493

    Google Scholar 

  420. Steel KM, Patrick JW (2003) The production of ultra clean coal by sequential leaching with HF followed by HNO3. Fuel 82: 1917–1920

    Article  Google Scholar 

  421. Dwari RK, Rao KH (2007) Dry beneficiation of coal — a review. Miner Process Extract Metallurg Rev 28: 177–234

    Article  Google Scholar 

  422. Fan M, Chen Q, Zhao Y, Luo Z (2002) dry coal separation by magnetically stabilized fluidized-bed. Xuanmei Jishu: 6–8

    Google Scholar 

  423. Qingru C, Yufen Y (2002) Current status in the development of dry beneficiation technology of coal with air-dense medium fluidized bed in China. Symposium Series — South African Institute of Mining and Metallurgy S29: 429–432

    Google Scholar 

  424. Tanaka Z (1986) Dry coal preparation. Nippon Kogyo Kaishi 102: 730–731

    Google Scholar 

  425. Tanaka Z (1996) Dry-cleaning coal by fluidized-bed. Kemikaru Enjiniyaringu 41: 218–221

    Google Scholar 

  426. Tanaka Z, Oshitani J, Kubo Y (2002) Dry coal cleaning process with fluidized heavy media. Symposium Series — South African Institute of Mining and Metallurgy S29: 425–428

    Google Scholar 

  427. Wei L, Chen Q, Zhao Y (2003) Formation of double-density fluidized bed and application in dry coal beneficiation. Coal Prep (Philadelphia, PA, USA) 23: 21–32

    Article  Google Scholar 

  428. Kelland DR (1984) Continuous heavy medium recovery by high gradient magnetic separation (HGMS). IEEE Trans Magnet MAG- 20: 1180–1182

    Article  Google Scholar 

  429. Kelland DR, Dobby GS, Maxwell E (1981) Efficient HGMS for highly magnetic materials. IEEE Transactions on Magnetics MAG- 17: 3308–3310

    Article  Google Scholar 

  430. Kelland DR, Maxwell E (1978) Improved magnetite recovery in coal cleaning by HGMS. IEEE Trans Magnet MAG- 14: 401–403

    Article  Google Scholar 

  431. Liu YA, Oak MJ (1983) Studies in magnetochemical engineering. Part III: Experimental applications of a practical model for high-gradient magnetic separation to pilot-scale coal beneficiation. AIChE J 29: 780–789

    Article  Google Scholar 

  432. Luo Z-f, Fan M-m, Chen Q-r (2001) Stability of magnetically fluidized bed, Zhongguo Kuangye Daxue Xuebao 30: 350–353

    Google Scholar 

  433. Oda T, Kunisue Y, Fujita T, Masuda S (1982) Coal powder beneficiation by dry-type HGMS. Nippon Oyo Jiki Gakkaishi 6: 159–162

    Google Scholar 

  434. Oder RR, R.E. Jamison, and E.D. Brandner (2001) Dry coal cleaning with a MagMill. Mining Eng (Littleton, CO, USA) 53: 47–51

    Google Scholar 

  435. Oder RR, Jamison RE, Reichner TW, Davis JR (1995) Coal cleaning in a Mag-Mill. Proceedings — Annual International Pittsburgh Coal Conference 12th: 306–311

    Google Scholar 

  436. Zhou S, Garbett ES, Boucher RF (1996) Gravity-enhanced magnetic (HGMS) coal cleaning. Indus Eng Chem Res 35: 4257–4263

    Article  Google Scholar 

  437. Coal Resource: A Comprehensive Overview of Coal, World Coal Institute. www. worldcoal.org

  438. Tennessee Valley Authority (1/9/2009) Coal fired power plant. www.tva.gov/ power/coalart.htm

  439. Fogelholm C-J, Tuominen M, Saeed LH (1998) Comparison between IGCC and supercritical power plant processes. Proceedings — Annual International Pittsburgh Coal Conference 15th: 66–77.

    Google Scholar 

  440. Tagishi A, Nakamura S (2000) Advanced technology on coal-fired power generation systems. Editor(s): Cheng, Ping. Proceedings of Symposium on Energy Engineering in the 21st Century, Hong-Kong, China, January 9–13, 2000 4: 1715–1721

    Google Scholar 

  441. Klebes J (2007) High efficiency coal-fired power plant based on proven technology. VGB PowerTech 87(3): 80–84.

    Google Scholar 

  442. Gasteiger G, Stamatelopoulos G-N (2002) State-of-the-art and perspectives of coal-fired power plants. Stahl und Eisen 122(5) 29–36.

    Google Scholar 

  443. Gorokhov VA, Ramezan M, Ruth LA, Kim SS (1999) Worldwide supercritical power plants: status and future. Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems 24th: 25–37.

    Google Scholar 

  444. Blum R, Hald J (1998) High efficiency USC power plant — present status and future potential. VTT Symp 184: 13–27.

    Google Scholar 

  445. Tokuda K, Hashimoto A, Fujioka Y, Kaneko S (1998) Progress of advanced coal power plant technology. Mitsubishi Juko Giho 35(6): 378–379.

    Google Scholar 

  446. Loh HP, Ruether J, Dye R (1998) Advanced technologies for power generation from coal with reduced carbon dioxide emissions. Greenhouse Gas Mitigation: Technologies for Activities Implemented Jointly, Proceedings of Technologies for Activities Implemented Jointly, Editor(s): Riemer PWF, Smith AY, Thambimuthu KV, Vancouver, BC, May 26–29, 1997: 567–572

    Google Scholar 

  447. Muramatsu K (1999) Development of ultra-super critical plant in Japan, Advanced Heat Resistant Steels for Power Generation. Conference Proceedings, Editor(s): Viswanathan R, Nutting JW, San Sebastian Spain, April 27–29, 1998: 543–559.

    Google Scholar 

  448. Blum R, Hald J (1998) High efficiency USC power plant — present status and future potential. VTT Symp 184: 13–27.

    Google Scholar 

  449. Miyashita K (1997) Overview of advanced steam plant development in Japan. IMechE Conf Trans (2, Advanced Steam Plant) 17–30.

    Google Scholar 

  450. Blum HJR, Hald J (1997) Development of high-efficiency USC power plants in Denmark. IMechE Conf Trans (2, Advanced Steam Plant) 3–16

    Google Scholar 

  451. Clarke PD, Morris PF, Cardinal N, Worrall MJ (2003) Factors influencing the creep resistance of martensitic alloys for advanced power plant applications. In Parsons 2003: Engineering Issues in Turbine Machinery, Power Plant and Renewables. Strang A, Conroy RD, Banks WM, Blackler M, Leggett J, McColvin GM, Simpson S, Smith M, Starr F, Vanstone RW, Eds. Inst Mater Miner Mining: 333–345

    Google Scholar 

  452. Birks N (1995) Selection of materials for advanced heat exchangers. Report to Pittsburgh Energy Technology Center

    Google Scholar 

  453. Hottenstine RD (1999) An investigation of the role of super nine material in supercritical plant development. Parsons Infrastructure and Technology Group, Inc Position Paper PZ-401-03

    Google Scholar 

  454. Viswanathan R, Bakker WT (2000) Materials for ultra-supercritical fossil power plants. EPRI Report No. TR-114750

    Google Scholar 

  455. Kaplan A, Miyazaki A (1986) Advanced 12Cr steel for high-temperature rotors. Proc First EPRI Intl. Conf. on Improved Coal-Fired Power Plants, Electric Power Research Institute, Palo Alto, CA

    Google Scholar 

  456. Watanabe O, Ganesh S (1986) High-purity NiCrMoV steel for low-pressure rotors. Proc First EPRI Intl. Conf. on Improved Coal-Fired Power Plants, Electric Power Research Institute, Palo Alto, CA

    Google Scholar 

  457. Mayer K-H, Konig H (1986) High-temperature bolting. Proc First EPRI Intl. Conf. on Improved Coal-Fired Power Plants, Electric Power Research Institute, Palo Alto, CA

    Google Scholar 

  458. Mayer K-H, Gysel W (1986) Cast components. Proc First EPRI Intl. Conf. on Improved Coal-Fired Power Plants, Electric Power Research Institute, Palo Alto, CA

    Google Scholar 

  459. Vanstone R (2000) Advanced 700°C pulverized fuel power plant. In Proc 5th International Charles Parsons Turbine Conference: Parsons 2000: Advanced Materials for 21st Century Turbine and Power Plants. Strang A, Banks WM, Conroy RD, McColvin GM, Neal JC, Simpson S, Eds. IOM Communications, Ltd., London, Book 736: 91–97

    Google Scholar 

  460. Viswanathan R (2004) Materials for USC plant—a DOE project update. Proc 29th Int Technical Conference on Coal Utilization & Fuel Systems, National Energy Technology Laboratory

    Google Scholar 

  461. Armor AF, Preston GT (1985) A study of coal-fired power plants in Japan. Am Power Conf 47: 72–80

    Google Scholar 

  462. Muramatsu K (1999) Development of ultra-supercritical plant in Japan. In Advanced Heat- Resistant Steel for Power Generation, Viswanathan R, Nutting J, Eds, IOM Communications Ltd Book No. 708: 543–559

    Google Scholar 

  463. Masuyama F (2001) History of power plants and progress in heat-resistant steels. ISJI Int 41(6): 612–625

    Article  Google Scholar 

  464. Viswanathan R, Bakker WT (2001) Materials for ultra-supercritical coal power plants—turbine materials: Part II. J Mater Eng Perform 10(1): 96–101

    Article  Google Scholar 

  465. Shingledecker JP, Swindeman RW, Klueh RL, Maziasz PJ (2004) Mechanical properties and analysis of ultra-supercritical steam boiler materials. Proc. 29th Int. Technical Conference on Coal Utilization & Fuel Systems, National Energy Technology Laboratory

    Google Scholar 

  466. Harlow JH (1963) Metallurgical experience with the Eddystone 5000lb/in2 1200°F Unit No. 1. In Proc Joint International Conference on Creep. The Institution of Mechanical Engineers, London, Paper No. 10: 7–11–7–20

    Google Scholar 

  467. Chamberlain HG (July 1983) The Eddystone experience: an overview of experience in the first twenty-four years. Presented at the EPRI Advanced Pulverized Coal Power Plant Utility Advisory Committee Meeting, Washington, DC

    Google Scholar 

  468. Abe F, Horiuchi T, Taneike M, Sawada S (2003) Improvement of creep strength by boron and nanosize nitrides for tempered martensitic 9Cr-3W-3Co-Vnb steel at 650°C. Parsons 2003: Engineering Issues in Turbine Machinery, Power Plant and Renewables, Strang A, Conroy RD, Banks WM, Blackler M, Leggett J, McColvin GM, Simpson S, Smith M, Starr F, Vanstone RW, Eds. Inst Mater Miner Mining: 389–396

    Google Scholar 

  469. Muneki S, Okubo H, Okada H, Igarashi M, Abe F (2003) A study of new carbon-free martensitic alloys with superior creep properties at elevated temperatures over 973 K. Parsons 2003: Engineering Issues in Turbine Machinery, Power Plant and Renewables, Strang A, Conroy RD, Banks WM, Blackler M, Leggett J, McColvin GM, Simpson S, Smith M, Starr F, Vanstone RW, Eds. Inst Mater Miner Mining: 570–582.

    Google Scholar 

  470. Kure-Jensen J, Morson A, Schilke P (1993) Large steam turbines for advanced steam conditions. In Vol. 1 Proc EPRI Intl Symp on Improved Technology for Fossil Power Plants — New and Retrofit Applications

    Google Scholar 

  471. Seth B (1999) U.S. developments in advanced steam turbine materials. In Advanced Heat- Resistant Steel for Power Generation, Viswanathan R, Nutting J, Eds. IOM Communications Ltd Book No. 708: 519–542

    Google Scholar 

  472. Staubli ME, Mayer K-H, Kern TU, Vanstone RW (2000) COST 501–522: The European collaboration in advanced steam turbine materials for ultra-efficient, low-emissions steam power plant. In Proc 5th International Charles Parsons Turbine Conference: Parsons 2000 Advanced Materials for 21st Century Turbine and Power Plants, Strang A, Banks WM, Conroy RD, McColvin GM, Neal JC, Simpson S, Eds. IOM Communications, Ltd, London, Book 736: 98–122

    Google Scholar 

  473. Mayer K-H, Kern TU, Staubli ME, Tolksdorf E (2000) Long-term investigation of specimens of 24 production components manufactured from advanced martensitic 10%Cr steels for 600°C turbines. In Proc 5th International Charles Parsons Turbine Conference: Parsons 2000 Advanced Materials for 21st Century Turbine and Power Plants, Strang A, Banks WM, Conroy RD, McColvin GM, Neal JC, Simpson S, Eds. IOM Communications, Ltd, London, Book 736: 372–385

    Google Scholar 

  474. Blum R, Vanstone RW (2003) Materials development for boilers and steam turbines operating at 700°C. In Parsons 2003: Engineering Issues in Turbine Machinery, Power Plant and Renewables, Strang A, Conroy RD, Banks WM, M. Blackler, J. Leggett, G.M. McColvin, S. Simpson, M. Smith, F. Starr, and R.W. Vanstone, Eds. Maney for the Inst. of Materials, Minerals, and Mining: 489–510

    Google Scholar 

  475. Maziasz PJ, Pollard M (2003) High-temperature cast stainless steel. Adv Mater Process 161: (10) 57

    Google Scholar 

  476. Knödler R, Scarlin B (2002) Oxidation of advanced ferritic/martensitic steels and of coatings in flowing steam at 650°C. In Proc. Materials for Adv Power Eng 2002, Le-comte- Beckers J, Carton M, Schubert F, Ennis PJ. Eds. Forschungszentrum Julich GmbH: 1601–1611

    Google Scholar 

  477. Mayer K-H (1992) New materials for advanced steam turbines. Volume 5 of Survey of Superalloy Bolt Failures in High-temperature Service, EPRI Report No. TR100979

    Google Scholar 

  478. Hidaka K, Shiga M, Nakamura S, Fukui Y, Shimizu N, Kaneko R, Watanabe Y, Fujita T (1994) Development of 12Cr steel for 650°C USC steam turbine rotors. In Materials for Advanced Power Engineering 1994, Coutsouradis D, Davidson JH, Ewald J, Greenfield P, Khan T, Malik M, Meadowcroft DB, Regis V, Scarlin RB, Schubert F, Thornton DV, Eds. Kluwer: 281–290

    Google Scholar 

  479. Thornton DV, Meyer K-H (1994) European high-temperature materials development for advanced steam turbine. In Materials for Advanced Power Engineering, Cout-souradis D, Davidson JH, Ewald J, Greenfield P, Khan T, Malik M, Meadowcroft DB, Regis V, Scarlin RB, Schubert F, Thornton DV, Eds. Kluwer: 349–364

    Google Scholar 

  480. Miyazaki M, Yamada M, Tsuda Y, Ishii R (1994) Advanced heat-resistant steels for steam turbines. In Materials for Advanced Power Engineering, Coutsouradis D, Davidson JH, Ewald J, Greenfield P, Khan T, Malik M, Meadowcroft DB, Regis V, Scarlin RB, Schubert F, Thornton DV, Eds. Kluwer: 574–585

    Google Scholar 

  481. Distefano JR, DeVan JH, Fuller LC (1988) Assessment of materials requirements for advanced steam cycle systems (>1100°F). ORNL Report No. TM-10489

    Google Scholar 

  482. Pint BA, Rakowski JM (2000) Effect of water vapor on the oxidation resistance of stainless steels. Paper No. 00259, NACE/Corrosion 2000, Orlando, Florida

    Google Scholar 

  483. Woodford DA (1993) Test methods for accelerated development, design, and life assessment of high temperature materials. Mater Design 14(4): 231

    Article  Google Scholar 

  484. Viswanathan R, Coleman K, Rao U (2006) Materials for ultra — supercritical coal-fired power plant boilers. Int J Pressure Vessels Piping 83(11–12): 778–783

    Article  Google Scholar 

  485. Viswanathan R, Sarver J, Tanzosh JM (2006) Boiler materials for ultra — supercritical coal power plants -steam-side oxidation. J Mater Eng Perform 15(3): 255–274

    Article  Google Scholar 

  486. Caminada S, Cumino G, Cipolla L, Di Gianfrancesco A (2005) Long term creep behaviour and microstructural evolution of ASTM grade 91 steel. Advances in Materials Technology for Fossil Power Plants, Proceedings from the International Conference, 4th, Hilton Head Island, SC, USA, October 25–28, 2004: 1071–1085

    Google Scholar 

  487. Viswanathan R, Henry JF, Tanzosh J, Stanko G, Shingledecker J, Vitalis B, Purgert R (2005) U.S. program on materials technology for ultra — supercritical coal power plants. J Mater Eng Perform 14(3): 281–292

    Article  Google Scholar 

  488. Chen Q, Scheffknecht G (2003) New boiler and piping materials design. Consideration for advanced cycle conditions. VGB PowerTech 83(11): 91–98

    Google Scholar 

  489. Knezevic V, Sauthoff G, Vilk J, Inden G, Schneider A, Agamennone R, Blum W, Wang Y, Scholz A, Berger C, Ehlers J, Singheiser L (2002) Martensitic/ferritic super heat-resistant 650°C steels-design and testing of model alloys. ISIJ Int 42(12): 1505– 1514

    Article  Google Scholar 

  490. Advanced power plant using high efficiency boiler/turbine www.dti.gov.uk/files/file30703. pdf

  491. The World Bank. www.worldbank.org/html/fpd/em/supercritical/supercritical.htm

  492. Abroell GH, Bade K, Bietz H, Jahn P (1991) Largest fluidized-bed combustion power plant unit for electricity and heat supply in Berlin. VGB Kraftwerkstechnik 71: 1020–1030

    Google Scholar 

  493. Ahr O (1993) Successful operation of the atmospheric circulating fluidized-bed firing system of the Emile Huchet power plant. VGB Kraftwerkstechnik 73: 446–449

    Google Scholar 

  494. Anders R, Plass L, Beisswenger H (1989) Clean energy by Lurgi circulating fluidized-bed combustion (ZWS) technology. Industriefeuerung 48: 34–38

    Google Scholar 

  495. Basu P (2001) Revamping of a 120 MWe pulverized coal fired boiler with circulating fluidized bed firing. Proceedings of the International Conference on Fluidized Bed Combustion 16th: 881–891

    Google Scholar 

  496. Dreher I (1990) Two chosen circulating fluidized-bed combustors of power station boilers. Brennstoff-Waerme-Kraft (1949–1999) 42: 493–494, 497–498, 501–492

    Google Scholar 

  497. Forster M, Krumm W (1999) Theoretical investigations on the operational behavior of circulating pressurized fluidized bed combustion. VDI-Berichte 1492: 159–165

    Google Scholar 

  498. Furuya O, Takayama K (2000) Outline of circulating fluidized bed combustion boiler and improvement on steam cycle. Boira Kenkyu 299: 13–18

    Google Scholar 

  499. Girard R, Semedard JC (1988) Circulating fluidized bed combustion at the Emile Hu-chet power plant. Revue Generale de Thermique 27: 111–114

    Google Scholar 

  500. Glasmacher-Remberg C, Fett FN (1999) A dynamic simulation model for power plants with atmospheric and pressurized circulating fluidized bed combustion — interactions of plant components and design studies. Proceedings of the International Conference on Fluidized Bed Combustion 15th: 1429–1452

    Google Scholar 

  501. Hafke C, Plass L, Bierbach H (1988) Power stations based on circulating fluidized bed combustion. Chemie Ingenieur Technik 60: 686–690

    Article  Google Scholar 

  502. Isaka H, Hyvarinen KH, Morita A, Yano K, Ooide M (1989) Conceptual design of a 350-MWe circulating fluidized-bed power generating plant. Proceedings of the International Conference on Fluidized Bed Combustion 10th: 783–791

    Google Scholar 

  503. Jarboe TB, Wen H (1988) Circulating fluidized-bed power plants offer improved technology for burning low-grade coals. Mining Engineering (Littleton, CO, USA) 40: 1021–1023

    Google Scholar 

  504. Jukkola G, Liljedahl G, ya Nsakala N, Morin JX, Andrus H (2005) An ALSTOM vision of future CFB technology based power plant concepts. Proceedings of the International Conference on Fluidized Bed Combustion 18th: 109–120

    Article  Google Scholar 

  505. McIlveen-Wright D, Pinto RF, Armesto L, Caballero MA, Aznar MP, Cabanillas A, Huang Y, Franco C, Gulyurtlu I, McMullan JT (2006) A comparison of circulating fluidized bed combustion and gasification power plant technologies for processing mixtures of coal. biomass and plastic waste, Fuel Process Technol 87: 793–801

    Google Scholar 

  506. Nag PK, Raha D (1995) Thermodynamic analysis of a coal-based combined-cycle power plant. Heat Recover Syst CHP 15: 115–129

    Article  Google Scholar 

  507. Nielsen PT, Hebb JL, Aquino R (1998) Large-scale CFB combustion demonstration project. Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems 23rd: 23–34

    Google Scholar 

  508. Nowak W (1997) Fluidized-bed coal combustion. Part III. Steam power plants with pressurized fluidized-bed boilers. Gospodarka Paliwami i Energia 45: 2–10

    Google Scholar 

  509. Oakes EJ, Swartz KF (1988) Circulating fluidized bed combustion technology achieves commercial status — Colorado-Ute and Mt. Poso cogeneration company. Energy Technology 15: 83–92

    Google Scholar 

  510. Plass L, Daradimos G, Beisswenger H, Lienhard H (1986) Concepts and experience in the operation of power plants with circulating fluidized bed combustion. VGB Kraft-werkstechnik 66: 801–807

    Google Scholar 

  511. Plass L, Daradimos G, Lienhard H (1985) Power plants with circulating fluidized-bed combustion. Plant designs and operating experience, VDI-Berichte 574: 125–143

    Google Scholar 

  512. Rajaram S (1999) Next generation CFBC. Chem Eng Sci 54: 5565–5571

    Article  Google Scholar 

  513. Rajaram S (1999) Design features and operating experience of circulating fluidized bed boilers firing high ash coals in India. Proceedings of the International Conference on Fluidized Bed Combustion 15th: 832–844

    Google Scholar 

  514. Reddy DN, Sethi VK (2006) Refurbishment of an old PC boiler confronted with coal quality degradation by a CFBC boiler — a case study. Proceedings — Annual International Pittsburgh Coal Conference 23rd: 33 34/31–33 34/15

    Google Scholar 

  515. Schafer J, Renz U, Paul S (1999) Mathematical modeling of a circulating fluidized bed steam generator with the objective of a real-time simulation. VGB Kraftwerkstechnik 79: 48–53

    Google Scholar 

  516. Stamatelopoulos G-N, Seeber J (2005) Fluidized-bed technology for the capacity range 400 to 600 MWe. VGB PowerTech 85: 38–43

    Google Scholar 

  517. Wein WH, Hoeffgen K, Maintok H, Daradimos G (1982) Steam generator with circulating atmospheric fluidized-bed combustion. Stadtwerke Duisburg A.-GDuisburg Fed Rep Ger

    Google Scholar 

  518. Bockamp S (2002) Dynamic operating behavior of combined cycle power plants with circulating pressurized fluidized bed firing. Fortschritt-Berichte VDI, Reihe 6: Ener-gietechnik 478: i–iii, v–xiv, 1–204

    Google Scholar 

  519. Bockamp S, Krumm W (2001) Studies regarding dynamic load change behavior of a combined cycle power plant based on pressurized fluidized bed combustion with the aid of a simulation model. VDI-Berichte 1629: 161–171

    Google Scholar 

  520. Chalupnik RW, Krautz HJ, Schulze H, Stuhlmuller F, Thielen W (1999) Plant studies and experiments for a lignite-fired combined-cycle power plant using circulating pressurized fluidized bed combustion. Proceedings of the International Conference on Flu-idized Bed Combustion 15th: 1409–1428

    Google Scholar 

  521. Derdiger JA, Saliga JJ, Koza H (1985) An assessment of modularized turbocharged PFBC plants. Proceedings of the American Power Conference 47: 96–103

    Google Scholar 

  522. Forster M, Bockamp S, Krumm W (2000) Mathematical modelling of pressurized flu-idized bed systems — simulation of a combined cycle power plant. Recents Progres en Genie des Procedes 14: 559–567

    Google Scholar 

  523. Hashimoto H (1998) Development of a pressurized internally circulating fluidized-bed boiler and its further development for a gasifier, Dennetsu Kenkyu 37: 54–59

    Google Scholar 

  524. Heinbockel I, Fett FN (1995) Simulation of a combined cycle power plant based on a pressurized circulating fluidized bed combustor, Heat Recov Syst CHP 15: 171–178

    Article  Google Scholar 

  525. Holley EP, Lewnard JJ, Richardson KW, von Wedel G, Domeracki WF, Carpenter LK (1994) Demonstration of the advances pressurized circulating fluid bed combustion process at the Four Rivers Project, Proceedings — Annual International Pittsburgh Coal Conference 11th: 1334–1339

    Google Scholar 

  526. Holley EP, Lewnard JJ, von Wedel G, Richardson KW, Morehead HT (1995) Four rivers second generation pressurized circulating fluidized bed combustion project, Proceedings of the International Conference on Fluidized Bed Combustion 13th: 919– 924

    Google Scholar 

  527. Krautz HJ, Schierack F, Wirtz M, Priesmeier U (2003) Initial operation of the test facility with pressurized circulating fluidized bed combustion 2. Generation and experimental results in Cottbus, VDI-Berichte 1750: 87–92

    Google Scholar 

  528. McKinsey RR, Wheeldon JM, Brown RA (1996) Preliminary results of an engineering and economic evaluation of Lurgi-Lentjes-Babcock's circulating PFBC power plant design, Proceedings — Annual International Pittsburgh Coal Conference 13th: 261–266

    Google Scholar 

  529. Weinstein RE, Tonnemacher GC (1999) APFBC repowering could help meet Kyoto Protocol CO2 reduction goals, Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems 24th: 873–884

    Google Scholar 

  530. O'Donnell JJ (1990) A combined cycle power plant based on pressurized circulating fluid bed gasification and combustion. Proceedings — Annual International Pittsburgh Coal Conference 7th: 879–889

    Google Scholar 

  531. Schierack F, Krautz HJ (2001) Development of a new brown coal fired combined-cycle power plant using CPFBC. 2nd generation, Proceedings — Annual International Pittsburgh Coal Conference 18th: 1352–1362

    Google Scholar 

  532. Weinstein RE, Goldstein HN, White JS, Travers RW, Killen DC, Tonnemacher GC (1997) Repowering an existing steam plant with advanced circulating pressurized flu-idized bed combustion (APFBC). Proceedings of the International Conference on Flu-idized Bed Combustion 14th: 551–559

    Google Scholar 

  533. Wheeldon JM, Bonsu AK, Foote JP, Morton FC, Romans DE, Zoldak FD, Longan-bach JR, McClung JD, Lock DT (2001) Commissioning of the circulating PFBC in the Foster Wheeler advanced PFBC train at the PSDF. Proceedings of the International Conference on Fluidized Bed Combustion 16th: 1466–1485

    Google Scholar 

  534. Amick P, Geosits R, Herbanek R, Kramer S, Tam S (2002) A large coal IGCC power plant. Proceedings — Annual International Pittsburgh Coal Conference 19th: 436–463

    Google Scholar 

  535. Amick P, Geosits R, Herbanek R, Kramer S, Tam S (2003) An advanced IGCC coal power plant, Proceedings — Annual International Pittsburgh Coal Conference 20th: 410–430 (2003)

    Google Scholar 

  536. Anand A, May P, Wotzak G, Jandrisevits M, Yackly K (2005) Gas turbine cycle optimization for an IGCC plant, Proceedings — Annual International Pittsburgh Coal Conference 22nd: 188/181–188/114 (2005)

    Google Scholar 

  537. Banda BM, Evans TF, Thompson BH, Vierrath H (1985) Assessment of an IGCC power plant using British Gas/Lurgi gasifier. Proceedings of the American Power Conference 47: 244–249

    Google Scholar 

  538. Chen C-s, Chiu Y-p, Tsai Y-h, Huang C-c, Chen W-c, Chen B-c (2007Development status of integrated gasification combined cycle (IGCC) power plant. Nengyuan Jikan 37: 83–92

    MATH  Google Scholar 

  539. Freier MD, Jewell DM, Motter JW, Pinon P (1996) An advanced IGCC demonstration. Proceedings of the American Power Conference 58: 363–368

    Google Scholar 

  540. Frey HC, Zhu Y (2006) Improved System Integration for Integrated Gasification Combined Cycle (IGCC) Systems. Environ Sci Technol 40: 1693–1699

    Article  Google Scholar 

  541. Hu T-X, Zhang B-S, Xu G-S, Ai C-S (2003) General development of integral gasification combined cycle (IGCC) technology, Heilongjiang Dianli 25: 50–55

    Google Scholar 

  542. Imamoto T, Suzaki M, Shinada O, Ikegami T, Koyama T (2002) Development of integrated coal gasification combined cycle (IGCC) Mitsubishi Juko Giho 39: 124–127

    Google Scholar 

  543. Khan SR, Wayland RJ, Schmidt LJ (2005) Environmental impact comparisons IGCC vs. PC plants. Proceedings — Annual International Pittsburgh Coal Conference 22nd: 176/171–176/117

    Google Scholar 

  544. Korobov D (2003)Study of the efficiency potentials of IGCC power plant concepts. Freiberger Forschungshefte A A876: i–vi, 1–210

    Google Scholar 

  545. Korobov D, Ogriseck S, Meyer B (2005) Investigation of new IGCC concepts with high efficiency. Proceedings — Annual International Pittsburgh Coal Conference 22nd: 64/61–64/20

    Google Scholar 

  546. Marion JL, Liljedahl GN, Black S (2004) A review of the state-of-the-art and a view of the future for combustion-based coal power generation, Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems 29th: 601–612

    Google Scholar 

  547. Mirolli MD, Doering EL (1998) ASME PTC 47- IGCC performance testing: gasification island thermal performance testing. PWR (American Society of Mechanical Engineers) 33: 377–381

    Google Scholar 

  548. Nagai T, Kajitani S (2007) Development of IGCC demonstration plant — from 200 t/d pilot plant to 250 mw demonstration plant. J Jpn Inst Energy 86: 315–320

    Google Scholar 

  549. Nizamoff AJ, Kramer S, Lau FS, Olson S, Roberts M, Tam S, Zabransky R (2005) Lignite-fueled IGCC power plant. Proceedings — Annual International Pittsburgh Coal Conference 22nd: 173/171–173/118

    Google Scholar 

  550. Predick P, Rice D, Lauzze K (2006) Comparison of IGCC and pulverized coal technologies, Annual Convention Proceedings — Gas Processors Association 85th: predick paul1/1-predick paul1/17

    Google Scholar 

  551. Schellberg W (1998First results of the PRENFLO based IGCC power plant in Puertol-lano/Spain. Proceedings — Annual International Pittsburgh Coal Conference 15th: 455–463

    Google Scholar 

  552. Seliger B, Hanke-Rauschenbach R, Hannemann F, Sundmacher K (2006) Modelling and dynamics of an air separation rectification column as part of an IGCC power plant. Sep Purif Technol 49: 136–148

    Article  Google Scholar 

  553. Stahl K, Neergaard M (1999) Experiences from the Varnamo IGCC Demonstration Plant. VTT Symp 192: 73–86

    Google Scholar 

  554. Belova AG, Yegulalp TM (2007) Thermodynamic optimization of hydrogen production for a coal-based power plant with zero emissions. Transactions of Society for Mining, Metallurgy, and Exploration, Inc. 320: 6–10.

    Google Scholar 

  555. Bancalari Ed, Chan P, Diakunchak IS (2006) Advanced hydrogen turbine development. Proceedings — Annual International Pittsburgh Coal Conference 23rd: 29.2/ 1–29.2/16.

    Google Scholar 

  556. Corrado A, Fiorini P, Sciubba E (2006) Environmental assessment and extended ex-ergy analysis of a “zero CO2 emission”, high-efficiency steam power plant. Energy (Oxford, UK) 31(15): 3186–3198.

    Google Scholar 

  557. Verma A, Rao AD, Samuelsen GS (2006) Sensitivity analysis of a Vision 21 coal based zero emission power plant. J Power Source 158(1): 417–427.

    Article  Google Scholar 

  558. Lackner KS, Yegulalp T (2005) Thermodynamic foundation of the zero emission concept. Miner Metallurg Process 22(3): 161–167.

    Google Scholar 

  559. Giove J III, Daniels, J, Der VK (2004) FutureGen zero emission power plant of the future. Proceedings — Annual International Pittsburgh Coal Conference 21st 38.1/1–38.1/11.

    Google Scholar 

  560. Rao AD, Samuelsen GS, Yi Y (2005) Gas turbine based high-efficiency ‘Vision 21’ natural gas and coal central plants. Proceedings of the Institution of Mechanical Engineers, Part A: J Power Energy 219(A2): 127–136

    Article  Google Scholar 

  561. Martinez-Frias J, Aceves SM, Smith JR, Brandt H (2003) A coal-fired power plant with zero atmospheric emissions. AES (American Society of Mechanical Engineers) 43 (Proceedings of the ASME Advanced Energy Systems Division — 2003): 411–422

    Google Scholar 

  562. Koehler D, Krammer T, Schwaerzer M (2003) Zero emission coal process. BWK 55(3): 63–66

    Google Scholar 

  563. Ruth LA (2003) Advanced clean coal technology in the USA. Mater High Temp 20(1): 7–14

    Article  Google Scholar 

  564. Schreurs HCE (2002) Potential for CO2-sequestration in the Netherlands. Proceedings — Annual International Pittsburgh Coal Conference 19th: 724–742

    Google Scholar 

  565. Anderson RE, Brandt H, Pronske K, Viteri F (2002) Near-term potential for power generation from coal with zero atmospheric emissions. Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems 27th 1: 51–62

    Google Scholar 

  566. Anderson RE, Brandt H, Viteri F (2001) Power generation from coal with zero atmospheric emissions. Proceedings — Annual International Pittsburgh Coal Conference 18th: 940–951

    Google Scholar 

  567. Ziock H-J, Lackner KS, Harrison DP (2001) Zero Emission Coal power, a new concept. http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/2b2.pdf

  568. Ziock H-J, Lackner KS (1998–2000) Zero-emission coal technology. Earth and Environmental Sciences Progress Report 1998–2000: 52–55

    Google Scholar 

  569. Lozza G, Romano M (1/12/2008) A thermodynamic study of a novel zero emission power plant, based on hydrogasification of coal. http://www.ieacoal.org.uk/publishor/ system/component_view.asp?LogDocId=81714&PhyDocId=6369

  570. Meyers RA (1977) Coal Desulfurization. Marcel Dekker

    Google Scholar 

  571. Xu L, Zou D, Cheng Y (2006) Study on removal of organic sulfur in coal with n-propanol. Meitan Zhuanhua 29(4): 13–16

    Google Scholar 

  572. Zhao W, Zhu H, Yan X-h (2003) Organic sulfur removal from coal by copper chloride oxidation and tetrachloroethylene extraction. Ranliao Huaxue Xuebao 31(5): 390–394

    Google Scholar 

  573. Zhao J, Zhang Y, Wang H, Chen Q (2002) Desulfurization of high organic sulfur coal by tetrachloroethylene extraction. Meitan Zhuanhua 25(1): 48–51

    Google Scholar 

  574. Mukherjee S, Mahiuddin S, Borthakur PC (2001) Demineralization and desulfuriza-tion of subbituminous coal with hydrogen peroxide. Energy Fuels 15(6): 1418–1424

    Article  Google Scholar 

  575. Ratanakandilok S, Ngamprasertsith S, Prasassarakich P (2001) Coal desulfurization with methanol/water and methanol/KOH. Fuel 80(13): 1937–1942

    Article  Google Scholar 

  576. Wang G, Trass O (1997) Coal beneficiation-sulfur removal using methanol. Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems 22nd: 513–520

    Google Scholar 

  577. Lee S, Kulik C (1996) A novel precombustion coal desulfurization process. Recent Adv Coal Process 1 (New Trends in Coal Preparation Technologies and Equipment): 293–298, 306–307

    Google Scholar 

  578. Tartamella T, Fullerton K, Lee S, Fish R (1996) Ligand assisted desulfurization of lignite using the perchloroethylene coal refining process. Fuel Sci Technol Int 14(4): 503–509

    Google Scholar 

  579. Thome TL, Fullerton KL, Lee S (1994) Design and operation of a mini-pilot plant for the removal of sulfur from coal using the perchloroethylene process. Proceedings — Annual International Pittsburgh Coal Conference 11th 2: 1075–1080

    Google Scholar 

  580. Azzam FO, Lee S (1993) A comparison of alcohol-water blends in their supercritical desulfurization efficiency of Midwestern U.S. bituminous coals. Fuel Sci Technol Int 11(7): 951–73

    Google Scholar 

  581. Vishnubhatt P, Lee S (1993) Perchloroethylene extraction desulfurization of low sul-fate coals. Fuel Sci Technol Int 11(3–4): 529–39

    Google Scholar 

  582. Chou MIM, Lytle JM, Ruch RR, Kruse CW, Chaven C, Hackley KC, Hughes RE, Harvey RD, Frost JK (1992) Sulfur removal from high-sulfur Illinois coal by low-temperature perchloroethylene (PCE) extraction. Technical report, December 1, 1991– February 29, 1992, NTIS. Report (DOE/PC/91334-T57; Order No. DE92018296)

    Google Scholar 

  583. Lee S, Vishnubhatt P, Kulik CJ (1994) Selective removal of organic sulfur from coal by trichloroethane extraction. Fuel Sci Technol Int 12(2): 211–28

    Google Scholar 

  584. Attia YA, Lei W (1987) Removal of organic sulfur from high sulfur coals by mild chemical oxidation using potassium permanganate. Editor(s): Chugh YP, Caudle RD. Process Util High Sulfur Coals, Proc Int Conf 2nd: 202–12

    Google Scholar 

  585. Muchmore CB, Chen JW, Kent AC, Liszka M (1987) Removal of organic sulfur from coal by sequential treatment with alcohols. Coal Sci Technol 11(Int Conf Coal Sci: 439–42

    Google Scholar 

  586. Muchmore CB, Chen JW, Kent AC, Tempelmeyer KE (1985) Removal of organic sulfur from coal by supercritical extraction with alcohols, Preprints of Papers — American Chemical Society, Division of Fuel Chemistry 30(2): 24–34.

    Google Scholar 

  587. Muchmore CB, Chen JW, Kent AC, Tempelmeyer KE (1986) Removal of organic sulfur from coal by reaction with supercritical alcohols. ACS Symp Ser 319 (Fossil Fuels Util.): 75–85.

    Article  Google Scholar 

  588. Azzam FO, Fullerton KL, Kesavan S, Lee S (1992) Supercritical extraction of or-ganosulfur from coal using acetone-water mixtures. Fuel Sci Technol Int 10(3): 347– 69.

    Google Scholar 

  589. Azzam FO, Lee S (1993) A comparison of alcohol-water blends in their supercritical desulfurization efficiency of Midwestern U.S. bituminous coals. Fuel Sci Technol Int 11(7): 951–73.

    Google Scholar 

  590. Louie PKK, Timpe RC, Hawthorne SB, Miller DJ (1994) Sulfur removal from coal by analytical-scale supercritical fluid extraction (SFE) under pyrolysis conditions. Fuel 73(7): 1173–1178

    Article  Google Scholar 

  591. Kawatra SK, Eisele TC (2001) Coal desulfurization high efficiency preparation methods. Taylor & Francis

    Google Scholar 

  592. Sun L-B, Zong Z-M, Kou J-H, Yu G-Y, Chen H, Liu C-C, Zhao W, Wei X-Y, Lee CW, Xie K-C, Li C-Q, Takanohashi T, Li L-Y (2005) Thermal release and catalytic removal of organic sulfur compounds from upper free port coal. Energy Fuels 19: 339–342

    Article  Google Scholar 

  593. Sugawara T, Sugawara K (1991) Desulfurization from solid phase by rapid hydropyro-lysis of coal. Sekiyu Gakkaishi 34: 500–509

    Google Scholar 

  594. Sugawara K, Sugawara T, Shirai M (1999) Sulfur behavior in rapid pyrolysis of coals with chemical pretreatments, Japanese Journal of Applied Physics, Part 1: Regular Papers, Short Notes & Review Papers 38: 608–611

    Article  Google Scholar 

  595. Sugawara K, Abe K, Sugawara T (1995) Organic sulfur removal from coal by rapid pyrolysis with alkali leaching and density separation. Coal Sci Technol 24: 1709–1712

    Article  Google Scholar 

  596. Hippo EJ (1991) Mild pyrolysis of selectively oxidized coals. Technical report September 1–November 30, 1991 Energy Process South Illinois Univ Carbondale, IL, USA

    Google Scholar 

  597. Gryglewicz G (1996) Effectiveness of high temperature pyrolysis in sulfur removal from coal. Fuel Process Technol 46: 217–226

    Article  Google Scholar 

  598. Chen H, Li B, Zhang B (2000) Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis. Fuel 79: 1627–1631

    Article  Google Scholar 

  599. Joshi JB, Shah YT (1981) Kinetics of organic sulfur removal from coal by oxydesulfu-rization. Fuel 60: 612–614

    Article  Google Scholar 

  600. Palmer SR, Hippo EJ, Dorai XA (1994) Chemical coal cleaning using selective oxidation. Fuel 73: 161–169

    Article  Google Scholar 

  601. Jorjani E, Rezai B, Vossoughi M, Osanloo M, Abdollahi M (2004) Oxidation pre-treatment for enhancing desulfurization of coal with sodium butoxide. Miner Eng 17: 545–552

    Article  Google Scholar 

  602. Zhao JC, Hu WD, Long YH, Gao JS (1994) Study on the coal desulfurization by dilute alkali/acid treatment and its mechanism. Fuel Sci Technol Int 12: 1183–1191

    Google Scholar 

  603. Xiong F, Li W, Jiang Y (1993) Desulfurization of coal using molten caustic leaching. Meitan Zhuanhua 16: 67–75

    Google Scholar 

  604. Prassassarakich P, Thaweesri T (1996) Kinetics of coal desulfurization with sodium benzoxide. Fuel 75: 816–820

    Article  Google Scholar 

  605. Mukherjee S, Borthakur PC (2001) Chemical demineralization/desulphurization of high sulphur coal using sodium hydroxide and acid solutions. Fuel 80: 2037–2040

    Article  Google Scholar 

  606. Mukherjee S (2003) Demineralization and desulfurization of high-sulfur assam coal with alkali treatment. Energy Fuels 17: 559–564

    Article  Google Scholar 

  607. Li W, Cho EH (2005) Coal desulfurization with sodium hypochlorite. Energy Fuels 19: 499–507

    Article  Google Scholar 

  608. Zhang X, Su X, Ding Y, Wang S, Tao X (2005) Mechanism and strategy of biodesul-furization by chemoautotrophic Thiobacillus. Xiandai Huagong 25: 7–10

    Google Scholar 

  609. Runnion K, Combie JD (1993) Organic sulfur removal from coal by microorganisms from extreme environments. FEMS Microbiol Rev 11: 139–144

    Article  Google Scholar 

  610. Otaka Y (1993) Microbial removal of organic sulfur from coal. Nippon Enerugi Gak-kaishi 72: 142–150

    Google Scholar 

  611. Olsson G, Larsson L, Holst O, Karlsson HT (1993) Kinetics of coal desulfurization by Acidianus brierleyi. Chemical Eng Technol 16: 180–185

    Article  Google Scholar 

  612. Kurane R (1993) Biodesulfurization of hard-to-remove organic sulfur compounds by microorganism under microaerobic condition. Nippon Enerugi Gakkaishi 72: 151–157

    Google Scholar 

  613. Kilbane JJ II (1990) Microbial removal of organic sulfur from coal: current status and research needs. Bioprocess Biotreat Coal: 487–506

    Google Scholar 

  614. Kargi F, Robinson JM (1986) Removal of organic sulfur from bituminous coal. Use of the thermophilic organism Sulfolobus acidocaldarius. Fuel 65: 397–399

    Article  Google Scholar 

  615. Hossain SKM, Anantharaman N (2005) Biodesulfurization of coal using Thiobacillus ferrooxidans strain M-1. Chem Eng World 40: 101–104

    Google Scholar 

  616. Hossain SKM, Das M, Anantharaman N (2004) Studies of biodesulfurization of coal using thiobacillus ferrooxidans. Process Plant Eng 22: 85–88

    Google Scholar 

  617. He D-W, Liang Y-J, Chai L-Y, Wang Y-Y, Jin Y, Peng B (2006) Desulphurization of coal by fungus. Advanced Processing of Metals and Materials, Sohn International Symposium, Proceedings, San Diego, CA, USA, August 27–31 2: 163–170

    Google Scholar 

  618. Gullu G, Durusoy T, Ozbas T, Tanyolac A, Yurum Y (1992) Biodesulfurization of coal. NATO ASI Series. Ser C: Math Phys Sci 370: 185–205

    Google Scholar 

  619. Fecko P, Sitavancova Z, Cvesper L, Koval L (2006) Application of bacteria thiobacil-lus ferrooxidans by desulphurization of coal. Proceedings — Annual International Pittsburgh Coal Conference 23rd: 48 42/41–48 42/44

    Google Scholar 

  620. ElSawy A, Gray D (1991) A critical review of biodesulfurization systems for removal of organic sulfur from coal. Fuel 70: 591–594

    Article  Google Scholar 

  621. Boyer YN, Crooker SC, Kitchell JP, Nochur SV (1991) Enzymatic desulfurization of coal. Final report Revision Dyna Gen Inc Cambridge, MA, USA

    Google Scholar 

  622. Acharya C, Kar RN, Sukla LB (2004) Microbial desulfurization of different coals. Appl Biochem Biotechnol 118: 47–63

    Article  Google Scholar 

  623. Mobley JD, Dickerman JC (1984) Commercial utility flue gas desulfurization systems. US Environmental Protection Agency, Washington, DC, EPA/600/J-84/084. Mech Eng 106(7): 62–71

    Google Scholar 

  624. Srivastava RK (2000) Controlling SO2 emissions: a review of technologies. US Environmental Protection Agency, Washington, DC, EPA/600/R-00/093 (NTIS PB2001-101224)

    Google Scholar 

  625. Wet Flue Gas Desulfurization (FGD) www.worldbank.org/html/fpd/em/power/EA/ mitigatn/aqsowet.stm

  626. US Environmental Protection Agency. Lesson 9 Flue Gas Desulfurization (Acid Gas Removal) Systems. yosemite.epa.gov/oaqps/EOGtrain.nsf/fabbfcfe2fc93dac85256afe 00483cc4/d4ec501f07c0e03a85256b6c006caf64/$FILE/si412c_lesson9.pdf

  627. IEA Clean Coal centre. Clean Coal Technologies, Flue gas desulfurization (FGD) for SO2 control. www.iea-coal.org.uk/site/ieacoal/home

  628. Anderson K, Barrier J, O'Brien W, Tomlinson S (1981) Definitive SOx control process evaluations: limestone, lime, and magnesia FGD processes. US Environmental Protection Agency, Washington, DC, EPA/600/7-80/001

    Google Scholar 

  629. Black & Veatch Consulting Engineers (1983) Lime FGD Systems Data Book. 2nd ed. EPRI, Publication No. CS-2781

    Google Scholar 

  630. Hance SB, Kelly JL (1991) Status of flue gas desulfurization systems. Paper presented at the 84th Annual Meeting of the Air and Waste Management Association. Paper No. 91-157.3

    Google Scholar 

  631. Babcock & Wilcox Company (1987) LIMB Demonstration Project Extension. Comprehensive Report to Congress, DOE Clean Coal Technology Program, Babcock & Wilcox Company.

    Google Scholar 

  632. Clark J, Koucky R, Gogineni M, Kwasnik A (1994) Demonstration of sorbent injection technology on a tangentially coal-fired utility boiler (Yorktown LIMB demonstration). US Environmental Protection Agency, Washington, DC, EPA/600/R-94/184 (NTIS PB95105881)

    Google Scholar 

  633. LIMB Demonstration Project Extension and Coolside Demonstration. A DOE Assessment, DOE/NETL-2000/1123, U.S. Department of Energy, National Energy Technology Laboratory

    Google Scholar 

  634. DePero MJ, Goots TR, Nolan PS (1992) Final Results of the DOE LIMB and Coolside Demonstration Projects. Babcock & Wilcox Company, Presented at First Annual Clean Coal Technology Conference, Cleveland, OH, November 1992

    Google Scholar 

  635. Electric Power Research Institute (1989) TAG™ Technical Assessment Guide, Report P-6587-l, Electric Power Research Institute, Palo Alto, CA

    Google Scholar 

  636. Goots TR, DePero MJ, Nolan PS (1992) LIMB Demonstration Project Extension and Coolside Demonstration -Final Report. Babcock & Wilcox Company. DOE/PC/79798-T27 (NTIS DE93005979

    Google Scholar 

  637. McCoy DC, Scandrol RO, Statnick RM, Stouffer MR, Winschel RA, Withum JA, Wu MM, Yoon H (1992) The Edgewater Coolside Process Demonstration: A Topical Report, report to Babcock & Wilcox Company, Consolidation Coal Company. DOE/PC/79798-T26 (NTIS DE93001722)

    Google Scholar 

  638. Nolan PS (1996) Emission control technologies for coal fired power plants. BR-1607, Babcock & Wilcox Co., Ohio, USA

    Google Scholar 

  639. Clean coal technology demonstration program (1992) DOE/FE/0247P, US Department of Energy, Washington DC, USA

    Google Scholar 

  640. Shiomoto GH, Smith RA, Muzio LJ, Hunt T (1994) Integrated dry NOx/SO2 emissions control system calcium-based dry sorbent injection. Test report, April 30–November 2, 1993, DOE/PC/90550–T14

    Google Scholar 

  641. Sedman C, Maxwell M, Jozewicz W, Chang J (1990) Commercial development of the advacate process for flue gasdesulfurization. US Environmental Protection Agency, Washington, DC, EPA/600/D-90/147

    Google Scholar 

  642. Lepovitz LR, Brown CA, Pearson TE, Boyer JF, Burnett TA, Norwood VM, Puschaver EJ, Sedman CB, TooleO’Neil B (1993) 10 MW Demonstration of the ADVACATE Flue Gas Desulfurization Process. EPRI, 1993 SO2 Control Symposium, Boston, MA, 1993

    Google Scholar 

  643. Drehmel DC, Princiotta FT (1988) Research in a regulatory environment. PB-88-239058/XAB;EPA-600/D-88/173

    Google Scholar 

  644. Sparks LE, Durham NP (1987) Combined electrostatic precipitator and acidic gas removal system, US Patent 4, 885, 139

    Google Scholar 

  645. World Coal Institute (1/9/2009) Coal statistics. www.worldcoal.org

  646. Shadle LJ, Berry DA, Syamlal M (2004) Coal Liquefaction. Kirk-Othmer Encyclopedia of Chemical Technology. Wiley-Interscience

    Google Scholar 

  647. Lee S, Speight JG, Loyalka SK (2007) Handbook of Alternative Fuel Technologies. CRC Press, Boca Raton, FL

    Google Scholar 

  648. Okuma O, Sakanishi K (2004) Liquefaction of Victorian Brown Coal. Advances in the Science of Victorian Brown Coal. Elsevier Science

    Google Scholar 

  649. Williams RH, Larson ED (2003) A comparison of direct and indirect liquefaction technologies for making fluid fuels from coal. Energy for Sustainable Development VII(4).

    Google Scholar 

  650. Miller CL (2007) Coal Conversion — A Rising Star. 23rd Intl Pittsburgh Coal Conference, September 25–28, 2006. Coal Conversion — Pathway to Alternate Fuels Office of Fossil Energy U.S. Department of Energy, Congressional Briefing Washington, DC

    Google Scholar 

  651. US Department of Energy (1977) Assessment of Technology for Liquefaction of Coal. www.fischer-tropsch.org/DOE/DOE_reports/12163/fe12163_toc.htm

  652. Ahmed MM (1979) Solvent Refined Coal (SRC) Process. Development of a Process for producing an Ashless, Low Sulfur Fuel from Coal. Volume IV. Product Studies. Part 9: An Investigation of the Activity of Two Cobalt-Molybdenum-Alumina Catalysts for hydrodesulfurization of a Coal-Derived Liquid. FE-O496-T9

    Google Scholar 

  653. US Department of Energy (1978) Environmental Development Plan (EDP) Coal Liquefaction Program. DOEIEUP-O012

    Google Scholar 

  654. Weinstein NJ (1977) Fundamental data Needs for Coal Conversion Technology. US Department of Energy C00/4059-1

    Google Scholar 

  655. O'Hara JB, Jentz NE, Syverson HT, Hervey GH, Teeple RV (1977) Project POGO: Total Coal Utilization COG Refining Design Criteria. US Department of Energy FE-1775–11

    Google Scholar 

  656. US Department of Energy (1978) Clean Coke Process: Process Development Studies. FE-1220-39, vol. 1–3, pts. 1 and 2

    Google Scholar 

  657. Epstein M, Chen TP, Ghaly MA (1978) Analysis of coal hydrogasification processes. FE-2565-14

    Google Scholar 

  658. Fallon P, Steinberg H (1977) Flash hydropyrolsis of coal; The design, construction, operation and initial results of a flash hydropyrolysis experimental unit. BNL 50698

    Google Scholar 

  659. Encoal Corporation (1997) Encoal mild coal gasification project. DOE/MC/27339-5798 (DE98002007)

    Google Scholar 

  660. Department of Trade and Industry, UK (1999) Coal Liquefaction, Technology Status Report 010 www.dti.gov.uk/ent/coal

  661. Derbyshire F, Hager T (1994) Coal liquefaction and catalysis. Fuel 73(7): 1087–1092

    Article  Google Scholar 

  662. Lumpkin RE (1988) Recent progress in the direct liquefaction of coal. Science 19 February 1988, 239(4842): 873–877

    Article  Google Scholar 

  663. Donath EE (1977) Early Coal hydrogenation catalysts. Fuel Process Technol 1: 3–20

    Article  Google Scholar 

  664. Lee ES (1979) Coal liquefaction. In: Coal Conversion Technology, Wen CY, Lee ES, Eds. Addison-Wesley, Reading, MA, Chap. 5, 428–545

    Google Scholar 

  665. Elliott MA (1981) Chemistry of Coal Utilization. Second Supplementary Volume, Elliott MA, ed. Wiley, New York

    Google Scholar 

  666. Derbyshire FJ (1988) Catalysis in coal liquefaction. IEACR/08, IEA Coal Research, London, UK

    Google Scholar 

  667. DOE COLIRN Panel, 1989, DOE COLIRN Panel (1989) Coal liquefactions — A research and development needs assessments. DOE Report No. DE- AC0187,ER30110, Final Report, Vol. 1 and Vol. 2, US Department of Energy, Pittsburgh, PA

    Google Scholar 

  668. van Krevelen D W (1993) Coal. Topology-Physics-Chemistry-Constitution. 3rd ed. Elsevier, Amsterdam

    Google Scholar 

  669. Weller S W (1994) Catalysis and catalyst dispersion in coal liquefaction. Energy Fuels 8(2): 415–420

    Article  Google Scholar 

  670. Mochida I, Sakanishi K (1994) Catalysis in coal liquefaction. Adv Catal 40: 39–85

    Article  Google Scholar 

  671. Chianelli RR, Lyons JE, Mills GA (1994) Catalysts for liquid transportation fuels from petroleum, coal, residual oil and biomass. Catal Today 22: 261–396

    Article  Google Scholar 

  672. Comolli AG, Lee LK, Pradhan VR, Stalzer RH (1995) The direct liquefaction proof of concept program. Proceedings of US DOE Coal liquefaction and Gas Conversion Contractors Review Conference, August 29–31, 1995, Pittsburgh, PA: 25–36

    Google Scholar 

  673. Comolli AG, Zhou P (2000) The direct liquefaction proof of concept facility. Hydrocarbon Technologies Inc Final Report to US DOE, AC22-92PC92148, US Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA

    Google Scholar 

  674. S Wasaka. Securing liquid fuels in the 21st century. Achievements in development of the NEDOL coal liquefaction process. www.apec-egcfe.org/7thtech/p42.pdf

  675. Kydd PH, Chervenak MC, DeVaux GR (1983) H-Coal process and plant design. US Patent 4400263

    Google Scholar 

  676. Johnson CA, Chervenak MC, Johanson ES, Stotler HH (1973) Present status of the H-coal® process. In Clean Fuel from Coal, Institute of Gas Technology Symposium, Chicago, September 10–14 1973: 549

    Google Scholar 

  677. Neavel RC, Knights CF, Schulz H (1981) Exxon Donor Solvent Liquefaction Process [and Discussion]. New Coal Chemistry, Philosophical Transactions of the Royal Society of London. Ser A, Math Phys Sci 300(1453): 141–156

    Google Scholar 

  678. Schmid BK, Jackson DM (1980) SRC-II process. CONF-800528-1

    Google Scholar 

  679. Jackson DM, Schmid BK (1978) Commercial Scale Development of the SRC-II Process. Fifth Annual International Conference on Commercialization of Coal Gasification, Liquefaction, and Conversion to Electricity. Pittsburgh, USA, August 1–3: 22

    Google Scholar 

  680. Imhausen KH (1981) The joint Australia/Federal Republic of Germany feasibility study on the conversion of Australian coals into liquid fuels in Australia. Final Report Imhausen-Chemie G.m.b.H Lahr (Germany, F.R.)

    Google Scholar 

  681. Gorin E (1981) Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in The presence of a molten metal halide catalyst. US Patent 4247385

    Google Scholar 

  682. Comolli, A.G., Johanson, E.S., Karolkiewicz, W.F., Lee, L.K., Stalzer, R.H., Smith, T.O (1993) Catalytic Two-Stage Liquefaction (CTSL) process bench studies with bituminous coal. Final report [October 1, 1988–December 31, 1992], DOE/PC/88818–T3

    Google Scholar 

  683. Wright CW, Later DW (1985) HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing. PNL-5605

    Google Scholar 

  684. Li CZ (2004) Advances in the Science of Victorian Brown Coal. Elsevier

    Google Scholar 

  685. Bodie WW, Vyas KC (1974) Clean fuels from coal. Oil Gas J 72(34): 73–88

    Google Scholar 

  686. Project gasoline (1970) Volume IV, Book 3. Pilot-scale development of the CSF process. Interim report, July 1968–December 1970 PB-234131 OCR-39-(Vol. 4-Bk.3)

    Google Scholar 

  687. Simone AA, Long RH, Peluso M (1979) The C-E Lummus clean fuel from coal process. Presented at Coal Technology ‘79, Houston, TX, November 1979, 3: 263–287

    Google Scholar 

  688. Peluso M, Schiffer AN, Schindler HD (1981) The integrated two stage liquefaction process (ITSL) Presented at Coal Technology ‘81, Houston, 4: 353–379

    Google Scholar 

  689. Schiffer AN, Peluso M, Chen J, Schindler HD, Potts JD (1982) An update of the integrated two-stage liquefaction process (ITSL) Presented at the National Meeting of the Am Inst Chem Eng February–March 1982, Orlando, FL

    Google Scholar 

  690. Schindler HD, Chen JM, Peluso M, Moroni EC, Potts JD (1982) The integrated two stage liquefaction process (ITSL) Chem Econom Eng Rev 14(3): 15–20

    Google Scholar 

  691. Schiffer AN, Peluso M, Chen J, Schindler HD (1982) Integrated two-stage coal liquefaction. Energy Prog 2(4): 220–223

    Google Scholar 

  692. Rosenthal JW, Dahlberg AJ, Kuehler CW, Cash DR, Freedman W (1982) The Chevron coal liquefaction process (CCLP). Fuel 61(10): 1045–1050

    Article  Google Scholar 

  693. Brule MR (1983) Process for the liquefaction of coal. US Patent 4,374,015

    Google Scholar 

  694. Honda H, Kakiyama H (1979) Solvolysis liquefaction of coal. Energy Dev Jpn 1(3) 255–266

    Google Scholar 

  695. Würfel H (1986) Pyrosol, the new coal liquefaction process of Saarbergwerke AG Erdoel Erdgas. 102(1): 45–48

    Google Scholar 

  696. Nalitham RV, Lee JM, Davies OL, Pinkston TE, Jeffers ML, Prasad A (1988) Catalytic close-coupled two-stage liquefaction process development with a bituminous coal. Fuel Proc Tech 18, 161

    Article  Google Scholar 

  697. Geoff MK. A History of Coal Liquefaction in United Kingdom. 1967–1992 www.anl.gov/PCS/acsfuel/preprint%20archive/Files/Merge/Vol-42_1-0003.pdf

  698. Greene M, Gupta A, Moon W (1986) Coal liquefaction/resid hydrocracking via two-stage integrated co-processing. Prepr Pap Am Chem Soc Div Fuel Chem 31(4): 192. American Chemical Society national meeting September 7, 1986, Anaheim, CA, USA: 208–215

    Google Scholar 

  699. Lee LK, Ignasiak B (1988) The behavior of Highvale and Vesta coals under coprocessing conditions. CONF-8806312, Preprints of Papers, American Chemical Society, Division of Fuel Chemistry 33(1) Symposium on coal-derived fuels — coprocessing, June 5–10, 1988, Toronto (Canada): 20–26

    Google Scholar 

  700. Rahimi PM, Fouda SA, Kelly JF. Coprocessing using H2 as a promoter. http://www.anl.gov/PCS/acsfuel/preprint%20archive/Files/31_4_ANAHEIM_09-86_0192. pdf

  701. Fouda SA, Kelly JF (1985) CANMET coprocessing of low-rank Canadian coals’ Division Report ERP/ERL 85-63(0PJ) CANMET, Energy Mines and Resources Canada, Presented at the US Dept of Energy Direct Liquefaction Contractors' Review Meeting, Pittsburg, PA, November 19–21, 1985

    Google Scholar 

  702. Kelly JF, Fouda SA, Rahimi PM, Ikura M (1984) CANMET coprocessing — A status report. Proceedings o f the Coal Conversion Contractors' Review Meeting, Calgary, Alberta, 1984; Kelly JF (ed)

    Google Scholar 

  703. Comolli AG, Lee TLK, Hu J, Karolkiewicz WF, Parfitt DS, Popper G, Zhou PZ (1998) Direct liquefaction proof-of-concept program. DE-92148-TOP-10

    Google Scholar 

  704. Larson ED, Tingjin R (December 2003) Synthetic fuel production by indirect coal liquefaction. Energy Sust Dev VII(4)

    Google Scholar 

  705. Eastman Chemical and Air Products and Chemicals Inc (Eastman) (2003) Project Data on Eastman Chemical Company’s Chemicals-from-Coal Complex in Kingsport, TN, for USDOE/NETL contract DE-FC22-92PC90543, Kingsport, Tennessee, March.

    Google Scholar 

  706. Derbyshire F, Hager T (1994) Coal liquefaction and catalysis. Fuel 73(7): 1087–1092

    Article  Google Scholar 

  707. Dry ME (1983) The Sasol Fischer-Tropsch processes. Appl Ind Catal 2: 167–213

    Google Scholar 

  708. Dry ME (1988) The Sasol route to chemicals and fuels. Stud Surf Sci Catal 36: 447– 456

    Article  Google Scholar 

  709. Joiner JR, Kovach JJ (1982) Sasol Two and Sasol Three. Energy Prog 2: 66–68

    Google Scholar 

  710. Mako PF, Van Oeveren P (1982) Coal liquefaction. Sasol technology. Proc — Int Symp: Large Chem Plants: Energy, Feedstocks, Processes, 5th: 89–98

    Google Scholar 

  711. McIver AE (1975) SASOL: processing coal into fuels and chemicals for the South African Coal, Oil and Gas Corporation. Annu Symp Coal Gasif, Liquefaction, Util: Best Prospects Commer, [Proc], 2nd: IX, 24 pp

    Google Scholar 

  712. Mullowney JF (1980) Sasol — coal to synfuels now. Fuels Future, Pap Altern Fuels/Refin Tech Stream Sess: 31–34

    Google Scholar 

  713. Papic MM (1981) Coal liquefaction via Sasol Fischer-Tropsch synthesis. CIM Bulletin 74: 60–64

    Google Scholar 

  714. Samuel WA (1981) Sasol — a proven prescription to convert tons to barrels. Energy Technology 8th: 704–711

    Google Scholar 

  715. Dry ME, Erasmus HBW (1987) Update of the Sasol synfuels process. Ann Rev Energy 12: 1–46

    Article  Google Scholar 

  716. Wham RM, Fisher JF, Forrester RC III, Irvine AR, Salmon R, Singh SPN, Ulrich WC (1981) Liquefaction technology assessment. Phase I: indirect liquefaction of coal to methanol and gasoline using available technology. Report ORNL-5664

    Google Scholar 

  717. Coal liquefaction technology assessments, phase I (1980) Report ORNL/Sub-80/24707/1

    Google Scholar 

  718. Coal Liquefaction Technology Assessment Phase II. Texaco gasifications. Final report (1984) Report ORNL/Sub-81/24707/2; Order No. DE84010163

    Google Scholar 

  719. Grimmer HR, Thiagarajan N, Nitschke E (1988) Conversion of methanol to liquid fuels by the fluid bed Mobil process (a commercial concept) Stud Surf Sci Catal 36 (Methane Convers): 273–291

    Article  Google Scholar 

  720. Yurchak S (1988) Development of Mobil 's fixed-bed methanol-to-gasoline (MTG) process. Stud Surf Sci Catal 36 (Methane Convers): 251–272

    Article  Google Scholar 

  721. Lee S, Gogate M, Kulik CJ (1995) Methanol-to-gasoline vs. DME-to-gasoline. II. Process comparison and analysis. Fuel Sci Technol Int 13(8): 1039–1057

    Google Scholar 

  722. Chang CD (1997) MTG: from concept to commercial reality. Book of Abstracts, 214th ACS National Meeting, Las Vegas, NV, September 7–11, PETR-097

    Google Scholar 

  723. Keil FJ (1999) Methanol-to-hydrocarbons: process technology. Microporous Meso-porous Mater 29(1–2): 49–66

    Article  Google Scholar 

  724. Chang CD (2000) The methanol-to-hydrocarbons reaction: a mechanistic perspective. ACS Symp Ser 738 (Shape-Selective Catalysis): 96–114

    Article  Google Scholar 

  725. Hoek A, Kersten LBJM (2004) The Shell Middle Distillate Synthesis process: technology, products and perspective. Stud Surf Sci Catal 147 (Natural Gas Conversion VII): 25–30

    Article  Google Scholar 

  726. Senden M, McEwan M (2000) The Shell Middle Distillate Synthesis experience. Proceedings of the World Petroleum Congress 16th, 4: 7–10

    Google Scholar 

  727. Eilers J, Posthuma SA, Sie ST (1990) The Shell middle distillate synthesis process (SMDS) Catal Lett 7(1–4): 253–269

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

(2009). Coal. In: Ghosh, T.K., Prelas, M.A. (eds) Energy Resources and Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2383-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2383-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2382-7

  • Online ISBN: 978-90-481-2383-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics