Skip to main content

Survival in Groundwater and Ft—ir Characterization of Some Pathogenic and Indicator Bacteria

  • Conference paper
Threats to Global Water Security

Groundwater represents a capital resource of drinking water in many countries, and there is a growing public concern in regard to contamination of groundwater aquifers by health relevant bacteria. In microcosmos filled either with groundwater alone, or containing also sand from a deep groundwater aquifer, the survival of different health relevant bacteria was tested at 10°C ± 1°C. While Biacillus megaterium and Staphylococcus aureus died off within 30 days, all other bacteria survived up to 100 days or even longer. If a natural population of groundwater bacteria was present in the experimental system, however, an enhanced die off of introduced species or strains was observed. The FT-IR spectroscopic traits of some of the bacteria concerned varied with cell age and culture conditions, and thus their use in a routine identification of bacterial contaminants to groundwater remains questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Claus, H., Rötlich, H. and Filip, Z., 1992: Survival in groundwater of some bacteria with natural and recombinant plasmids. Microbial Releases, 1: 103–110.

    Google Scholar 

  • Coates, J.D. and Achenbach, L.A., 2002: The biogeochemistry of aquifer systems. In: Hurst, C.J. (Ed.), Manual of Environmental Microbiology, Washington, DC: ASM Press, pp. 719–727.

    Google Scholar 

  • Filip, Z., 1978a: Infrared spectroscopy of two soils and their components. In: Krumbein, W. (Ed.), Environmental Biogeochemistry and Geomicrobiology, Ann Arbor, MI: Ann Arbor Sci. Publ., pp. 747–754.

    Google Scholar 

  • Filip, Z., 1978b: Infrarotspektren der mikrobiellen Biomasse und der Huminsäure im Podzolboden. Zeitschrift für Pflanzenernährung und Bodenkunde, 141: 711–715.

    Article  CAS  Google Scholar 

  • Filip, Z., Hermann, S. and Demnerova, K., 2008: FT-IR spectroscopic characteristics of differently cultivater Escherichia coli. Czech J. Food Sci. 26: 458–463.

    Google Scholar 

  • Filip, Z., Kaddu-Mulindwa, D. and Milde, G., 1988: Survival of some pathogenic and facultative pathogenic bacteria in groundwater. Water Science and Technology, 20: 227–231.

    CAS  Google Scholar 

  • Johnston, S.F., 1991: Fourier Transform Infrared — A Constantly Evolving Technology. New York: Ellis Horwood.

    Google Scholar 

  • Knorr, M., 1951: Zur hygienischen Beurteilung der Ergänzung und des Schutzes groμer Grundwasserverokommen. Grundwasser F., 92: 104–110.

    CAS  Google Scholar 

  • Naumann, D., 2000: Infrared spectroscopy in microbiology. In: Meyers, R.A. (Ed.), Encyclopedia of Analytical Chemistry. Chichester: Wiley, pp. 102–131.

    Google Scholar 

  • Naumann, D., Helm, D. and Labischinski, H., 1990: Einsatzmöglichkeiten der FT-IR Spektroskopie in Diagnostik und Epidemiologie. Bundesgesundheitsblatt, 33: 387–393.

    Google Scholar 

  • Naumann, D., Helm, D. and Labischinski, H., 1991: Microbiological characterizations by FT-IR spectroscopy. Nature, 351: 81–82.

    Article  CAS  Google Scholar 

  • Parker, F.S., 1971: Infrared Spectroscopy in Biochemistry, Biology and Medicine. London: Hilger.

    Google Scholar 

  • Pelikan, V., 1983: Groundwater Protection.. Praha: SNTL (in Czech).

    Google Scholar 

  • Schleyer, R. and Kerndorff, H., 1992: Die Grundwasserqualität westdeutscher Trinkwasser-ressourcen. Weinheim: VCH.

    Google Scholar 

  • Smith, R.L., 2002: Determining the terminal electron-accepting reactions in the saturated subsurface. In: Hurst, C.J. (Ed.), Manual of Environmental Microbiology, Washington, DC: ASM Press, pp. 743–752.

    Google Scholar 

  • Stetzenbach, L.D., Kelley, L.M. and Sinclair, N.A., 1986: Isolation, identification, and growth of well-water bacteria. Ground Water, 24: 6–10.

    Article  CAS  Google Scholar 

  • Ward, C.H., Giger, W. and McCarty, P.L. (Eds.), 1985: Ground Water Quality. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Filip, Z., Demnerova, K. (2009). Survival in Groundwater and Ft—ir Characterization of Some Pathogenic and Indicator Bacteria. In: Jones, J.A.A., Vardanian, T.G., Hakopian, C. (eds) Threats to Global Water Security. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2344-5_13

Download citation

Publish with us

Policies and ethics