Skip to main content

Blood Esterases as a Complex Biomarker for Exposure to Organophosphorus Compounds

  • Conference paper
Counteraction to Chemical and Biological Terrorism in East European Countries

Abstract

The growing threat of international terrorism brings with it new scenarios for disaster. For example, in the case of toxic organophosphorus compounds (OPs), it possible for terrorists to use known agents or inadvertently to produce highly toxic OPs of unknown structure as the result of attacks on chemical plants or stockpiles of pesticides and other chemicals. Defending against such agents requires rapid, sensitive, and specific detection of them and their biological effects. Thus, the development of biomarkers of human exposures to OPs is a vital component of the system of prediction and early diagnosis of induced diseases. The phosphylating properties of OPs lead to their differential interactions with various serine esterases. These enzymes include primary targets, e.g., acetylcholinesterase (AChE, acute toxicity) and neuropathy target esterase (NTE, delayed neuropathy, OPIDN); as well as secondary targets, e.g., butyrylcholinesterase (BChE) and carboxylesterase (CaE), which act as scavengers of OPs. The set of activities of these esterases as well as that of paraoxonase (PON1), which can hydrolyze and detoxify OPs, constitutes the “esterase status” of an organism that largely determines indi-vidual sensitivity to OPs and that may be used as a complex biomarker of exposure. This complex biomarker is more effective and informative than the standard determination of erythrocyte AChE and total blood cholinesterases. In particular, it assists with distinguishing between acute and delayed neurotoxicity induced by OPs, as we showed in experiments on acute exposure of hens to a neuropathic compound, O,O-dipropyl-O-dichlorovinyl phosphate. In addition, measuring decreased activities of BChE and CaE, which are often more sensitive biomarkers of OP exposure, allows us to reveal exposure to low doses, as demonstrated by treating mice with low doses of phosphorylated oximes. The aim of the ISTC Project summarized here is to develop a smart biosensor system for simultaneous analysis of a set of blood esterases including AChE, BChE, NTE, CaE, and PON1. The speed, sensitivity, and integrated approach of the method will allow hazards to be assessed and appropriate interventions to be recommended before overt toxic damage has occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.G. Costa, Biomarker research in neurotoxicology: The role of mechanistic studies to bridge the gap between laboratory and epidemiological investigations, Environ Health Perspect 104 (1996) (Suppl. 1), 55–67.

    Article  PubMed  CAS  Google Scholar 

  2. NRC (National Research Council) Biological markers in environmental health research, Environ Health Perspect 74 (1987), 3–9.

    Article  Google Scholar 

  3. C.M. Thompson., R.J. Richardson, Pesticide Toxicology and International Regulation, T.C. Marrs, B. Ballantyne Editors. New York, Wiley (2004), 89–127.

    Google Scholar 

  4. R.J. Richardson, Encyclopedia of Toxicology, P. Wexler Editor. Second ed. Oxford, Elsevier, vol. 3 (4 vols.) (2005), 302–306.

    Google Scholar 

  5. G.F. Makhaeva, V.L. Yankovskaya, N.V. Kovaleva, V.I. Fetisov, V.V. Malygin, N.A. Torgasheva., B.A. Khaskin, Antiesterase activity and toxicity of O,O-Dialkyl-S-ethoxycarbonyl bromomethylthiol-phosphates, Russian J Bioorganic Chem 25 (1999), 6–10.

    Google Scholar 

  6. M. Jokanovic, Biotransformation of organophosphorus compounds, Toxicology 166 (2001), 139–160.

    Article  PubMed  CAS  Google Scholar 

  7. J.E. Casida, G.B. Quistad, Organophosphate toxicology: safety aspects of nonacetylcholinesterase secondary targets, Chem Res Toxicol 17 (2004), 983–998.

    Article  PubMed  CAS  Google Scholar 

  8. D.E. Ray, P.G. Richards, The potential for toxic effects of chronic, low-dose exposure to organophos-phates, Toxicol Lett 120 (2001), 343–351.

    Article  PubMed  CAS  Google Scholar 

  9. E.S. Peeples, L.M. Schopfer, E.G. Duysen, R. Spaulding, T. Voelker, C.M. Thompson, O. Lockridge, Albumin, a new biomarker of organophosphorus toxicant exposure, identified by mass spectrometry, Toxicol Sci 83 (2005), 303–312.

    Article  PubMed  CAS  Google Scholar 

  10. M.H. Tarhoni, T. Lister D.E. Ray, W.G. Carter, Albumin binding as a potential biomarker of exposure to moderately low levels of organophosphorus pesticides, Biomarkers 13 (2008), 343–363.

    Article  PubMed  CAS  Google Scholar 

  11. L.G. Costa, T.B. Cole, G.P. Jarvik, C.E. Furlong, Functional genomic of the paraoxonase (PON1) polymorphisms: effects on pesticide sensitivity, cardiovascular disease, and drug metabolism, Annu Rev Med 54 (2003), 371–392.

    Article  PubMed  CAS  Google Scholar 

  12. M. Maroni, C. Colosio, A. Ferioli, A. Fait, Biological monitoring of pesticide exposure: a review, Introduction, Toxicology 143 (2000), 1–118.

    Article  PubMed  CAS  Google Scholar 

  13. T.C. Marrs, Toxicology of Organophosphate Nerve Agents, Chemical Warfare Agents: Toxicology and Treatment, T.C. Marrs, R.L Maynard, F.R. Sidell Editors. Second ed. New York, Wiley (2007), 191–221.

    Google Scholar 

  14. A. Moretto, Experimental and clinical toxicology of anticholinesterase agents, Toxicol Lett 102–103 (1998), 509–513.

    Article  PubMed  Google Scholar 

  15. J. Bajgar, Biological monitoring of exposure to nerve agents, Br J Ind Med 49 (1992), 648–653.

    PubMed  CAS  Google Scholar 

  16. R.J. Richardson, R.M. Worden, G.F. Makhaeva, Biomarkers and biosensors of delayed neuropathic agents, Handbook of the Toxicology of Chemical Warfare Agents, R.C. Gupta Editor. Elsevier (2009), 859–876.

    Google Scholar 

  17. B.W. Wilson, J.D. Henderson, Blood esterase determinations as markers of exposure, Rev Environ Contam Toxicol 128 (1992), 55–69.

    PubMed  CAS  Google Scholar 

  18. O. Lockridge, P. Masson, Pesticides and susceptible populations: people with butyrylcholinesterase genetic variants may be at risk, Neurotoxicology 21 (2000), 113–126.

    PubMed  CAS  Google Scholar 

  19. R.J. Richardson, Assessment of the neurotoxic potential of chlorpyrifos relative to other organophos-phorus compounds: a critical review of the literature, J Toxicol Environ Health 44 (1995), 135–165.

    Article  PubMed  CAS  Google Scholar 

  20. G.F. Makhaeva, V.V. Malygin, Sh.M. Yakubov, S.M. Gorbunov, Structure — antiesterase activity relationships studies in O-phosphorylated oximes. Pharm Chem J (Russian) 28(9) (1994), 14–18.

    Google Scholar 

  21. B. Li, M. Sedlacek, I. Manoharan, R. Boopathy, E.G. Duysen, P. Masson, O. Lockridge, Butyrylcholi-nesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma, Biochem Pharmacol 70 (2005), 1673–1684.

    Article  PubMed  CAS  Google Scholar 

  22. T. Langmann, C. Aslanidis, M. Schuierer, G. Schmitz, Differentiation-dependent expression of a human carboxylesterase in monocytic cells and transcription factor binding to the promoter, Biochem Biophys Res Commun 230 (1997), 215–219.

    Article  PubMed  CAS  Google Scholar 

  23. G.L. Ellman, K.D. Courtney, V. Andres, Jr., R.M. Featherstone, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem Pharmacol 7 (1961), 88–95.

    Article  PubMed  CAS  Google Scholar 

  24. T.L. Huang, A. Székács, T. Uematsu, E. Kuwano, A. Parkinson, B.D. Hammock, Hydrolysis of carbonates, thiocarbonates, carbamates, and carboxylic esters of alpha-naphthol, beta-naphthol, and p-nitrophenol by human, rat, and mouse liver carboxylesterases, Pharm Res 10 (1993), 639–648.

    Article  PubMed  CAS  Google Scholar 

  25. F. Worek, U. Mast, D. Kiderlen, C. Diepold, P. Eyer, Improved determination of acetylcholinesterase activity in human whole blood, Clin Chim Acta 288 (1999) 73–90.

    Article  PubMed  CAS  Google Scholar 

  26. M.K. Johnson, The Target for Initiation of Delayed Neurotoxicity by Organophosphorus Esters: Biochemical Studies and Toxicological Applications, Reviews in Biochemical Toxicology, E. Hodgson, J.R. Bend, R.M. Philpot Editors. Amsterdam, Elsevier, vol. 4 (1982), 141–212.

    Google Scholar 

  27. G.F. Makhaeva, V.V. Malygin, Organophosphate Induced Delayed Neurotoxicity (Review), NATO Book Series: Medical Aspects of Chemical and Biological Terrorism, Part.2. Chemical Terrorism and Traumatism, A. Monov, Ch. Dishovsky Editors. Sofia, Publishing House of the Union of Scientists in Bulgaria (2005), 271–302.

    Google Scholar 

  28. S.Y. Wu, J.E. Casida, Ethyl octylphosphonofluoridate and analogs: optimized inhibitors of neuropathy target esterase, Chem Res Toxicol 8 (1995), 1070–1075.

    Article  PubMed  CAS  Google Scholar 

  29. G.F. Makhaeva, L.V. Sigolaeva, L.V. Zhuravleva, A.V. Eremenko, I.N. Kurochkin, V.V. Malygin, R.J. Richardson, Biosensor detection of Neuropathy Target Esterase in whole blood as a biomarker of exposure to neuropathic organophosphorus compounds, J Toxicol Environ Health Part A, 66 (2003), 599–610.

    PubMed  CAS  Google Scholar 

  30. V.V. Malygin, V.B. Sokolov, R.J. Richardson, G.F. Makhaeva, Quantitative structure-activity relationships predict the delayed neurotoxicity potential of a series of O-alkyl-O-methylchloroformino phenyl-phosphonates, J Toxicol Environ Health Part A, 66 (2003), 611–625.

    PubMed  CAS  Google Scholar 

  31. P. Glynn, Neuropathy target esterase, Biochem J 344 (1999), 625–631.

    Article  PubMed  CAS  Google Scholar 

  32. M.K. Johnson, The primary biochemical lesion leading to the delayed neurotoxic effects of some organophosphorus esters, J Neurochem 23 (1974), 785–789.

    Article  PubMed  CAS  Google Scholar 

  33. M. Lotti, The pathogenesis of organophosphate polyneuropathy, Crit Rev Toxicol 21 (1992), 465–487.

    Article  CAS  Google Scholar 

  34. R.J. Richardson, Interactions of Organophosphorus Compounds with Neurotoxic Esterase, Organo-phosphates: Chemistry, Fate, and Effects, J.E. Chambers, P.E. Levi Editors. Academic, San Diego, CA (1992), 299–323.

    Google Scholar 

  35. L.G. Costa, Biomarker research in neurotoxicology: the role of mechanistic studies to bridge the gap between laboratory and epidemiological investigations, Environ Health Persp 104 (1996), (Suppl. 1), 55–67.

    Article  CAS  Google Scholar 

  36. G.F. Makhaeva, V.V. Malygin, N.N. Strakhova, L.V. Sigolaeva, L.G. Sokolovskaya, A.V. Eremenko, I.N. Kurochkin, R.J. Richardson, Biosensor assay of neuropathy target esterase in whole blood as a new approach to OPIDN risk assessment: review of progress, Hum Exp Toxicol 26 (2007), 273–282.

    Article  PubMed  CAS  Google Scholar 

  37. M.K. Johnson, P. Glynn, Neuropathy target esterase (NTE) and organophosphorus-induced delayed polyneuropathy (OPIDP): recent advances, Toxicol Lett 82–83 (1995), 459–463 (review)

    Article  PubMed  Google Scholar 

  38. D. Bertoncin, A. Russolo, S, Caroldi, M. Lotti, Neuropathy target esterase in human lymphocytes, Arch Environ Health 40 (1985), 221–230.

    Google Scholar 

  39. B.R. Dudek, R.J. Richardson, Evidence for the existence of neurotoxic esterase in neuronal and lymphatic tissue of the adult hen, Biochem Pharmacol 31 (1982), 1117–1121.

    Article  PubMed  CAS  Google Scholar 

  40. M. Maroni, M.L. Bleecker, Neuropathy target esterase in human lymphocytes and platelets, J Appl Toxicol 6 (1986), 1–7.

    Article  PubMed  CAS  Google Scholar 

  41. R.J. Richardson, B.R. Dudek, Neurotoxic Esterase: Characterization and Potential for a Predictive Screen for Exposure to Neuropathic Organophosphates, Pesticide Chemistry: Human Welfare and the Environment, J. Miyamoto, P.C. Kearney Editors. Oxford, Pergamon, vol. 3 (1983), 491–495.

    Google Scholar 

  42. M. Lotti, Biological monitoring for organophosphate-induced delayed polyneuropathy, Toxicol Lett 33 (1986), 167–172.

    Article  PubMed  CAS  Google Scholar 

  43. M. Lotti, C.E. Becker, M.J. Aminoff, J.E. Woodrow, J.N. Seiber, R.E. Talcott, R.J. Richardson, Occupational exposure to the cotton defoliants DEF and merphos. A rational approach to monitoring organo-phosphorus-induced neurotoxicity, J Occup Med 25 (1983), 517–522.

    PubMed  CAS  Google Scholar 

  44. M. Lotti, A. Moretto, R. Zoppellari, R. Dainese, N. Rizzuto, G. Barusco, Inhibition of lymphocytic neuropathy target esterase predicts the development of organophosphate-induced delayed polyneuropathy, Arch Toxicol 59 (1986), 176–179.

    Article  PubMed  CAS  Google Scholar 

  45. B.W. Schwab, R.J. Richardson, Lymphocyte and brain neurotoxic esterase: dose and time dependence of inhibition in the hen examined with three organophosphorus esters, Toxicol Appl Pharmacol 83 (1986), 1–9.

    Article  PubMed  CAS  Google Scholar 

  46. M. Lotti, Organophosphate-induced delayed polyneuropathy in humans: perspectives for biomonitoring, Trends Pharmacol Sci 81 (1987), 176–177.

    Article  Google Scholar 

  47. L.V. Sigolaeva, A. Makower, A.V. Eremenko, G.F. Makhaeva, V.V. Malygin, I.N. Kurochkin, F. Scheller, Bioelectrochemical analysis of neuropathy target esterase activity in blood, Anal Biochem 290 (2001), 1–9.

    Article  PubMed  CAS  Google Scholar 

  48. L.G. Sokolovskaya, L.V. Sigolaeva, A.V. Eremenko, I.V. Gachok, G.F. Makhaeva, N.N. Strakhova, V.V. Malygin, R.J. Richardson, I.N. Kurochkin, Improved electrochemical analysis of neuropathy target esterase activity by a tyrosinase carbon paste electrode modified by 1-methoxyphenazine methosulfate, Biotechnol Lett 27 (2005), 1211–1218.

    Article  PubMed  CAS  Google Scholar 

  49. I.N. Kurochkin, A.V. Eremenko, G.F. Makhaeva, L.V. Sigolaeva, G.V. Dubacheva, R.J. Richardson, Multi-strip Assay and Multimodal Biosensors for Environmental and Medical Monitoring of Neurotoxi-cants, Counteraction to Chemical and Biological Terrorism in the East Europe Countries, Ch. Dishovsky, A. Pivovarov, D. Benschop, Editors. Springer, NATO for Peace and Security Series (in press).

    Google Scholar 

  50. B. Clothier, M.K. Johnson, Rapid aging of neurotoxic esterase after inhibition by di-isopropylphosphoro-fluoridate, Biochem J 177 (1979), 549–558.

    PubMed  CAS  Google Scholar 

  51. M. Lotti, Cholinesterase inhibition: complexities in interpretation, Clin Chem 41 (1995), 1814–1818.

    PubMed  CAS  Google Scholar 

  52. T.J. Kropp, R.J. Richardson, Mechanism of aging of mipafox-inhibited butyrylcholinesterase, Chem Res Toxicol 20 (2007), 504–510.

    Article  PubMed  CAS  Google Scholar 

  53. M.J. van der Schans, A. Fidder, D. van Oeveren, A.G. Hulst, D. Noort, Verification of exposure to cholinesterase inhibitors: generic detection of OPCW Schedule 1 nerve agent adducts to human butyryl-cholinesterase, J Anal Toxicol 32 (2008), 125–130.

    PubMed  Google Scholar 

  54. G.F. Makhaeva, O.G. Serebryakova, N.P. Boltneva, T.G. Galenko, A.Yu. Aksinenko, V.B. Sokolov, I.V. Martynov, Esterase profile and analysis of structure — inhibitor selectivity relationships for homologous phosphorylated 1-hydroperfluoroisopropanoles, Dokl Biochem Biophys 423 (2008), 352–357.

    Article  PubMed  CAS  Google Scholar 

  55. M. Ehrich, B.S. Jortner, S. Padilla, Comparison of the relative inhibition of acetylcholinesterase and neuropathy target esterase in rats and hens given cholinesterase inhibitors, Fund Appl Toxicol 24 (1995), 94–101.

    Article  CAS  Google Scholar 

  56. R.C. Sorenson, C.L. Bisgaier, M. Aviram, C. Hsu, S. Billecke, B.N. La Du, Human serum Paraoxonase/ Arylesterase's retained hydrophobic N-terminal leader sequence associates with HDLs by binding phospholipids: apolipoprotein A-I stabilizes activity, Arterioscler Thromb Vasc Biol 19 (1999), 2214–2225.

    PubMed  CAS  Google Scholar 

  57. S. Deakin, I. Leviev, M. Gomaraschi, L. Calabresi, G. Franceschini, R.W. James, Enzymatically active paraoxonase-1 is located at the external membrane of producing cells and released by a high affinity, saturable, desorption mechanism, J Biol Chem (2002) 8, 277, 4301–4308.

    Article  CAS  Google Scholar 

  58. L.G. Costa, W.F. Li, R.J. Richter, D.M. Shih, A. Lusis, C.E. Furlong, The role of paraoxonase (PON1) in the detoxication of organophosphates and its human polymorphism, Chem-Biol Interact 119–120 (1999), 429–438.

    Article  PubMed  Google Scholar 

  59. B.N. La Du, Structural and functional diversity of paraoxonases, Nat Med 2 (1996), 1186–1187.

    Article  PubMed  Google Scholar 

  60. D.I. Draganov, B.N. La Du, Pharmacogenetics of paraoxonases: a brief review, Naunyn Schmiedebergs Arch Pharmacol 369 (2004), 78–88.

    Article  PubMed  CAS  Google Scholar 

  61. O. Khersonsky, D.S. Tawfik, Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase, Biochemistry 44 (2005), 6371–6382.

    Article  PubMed  CAS  Google Scholar 

  62. C.E. Furlong, T.B. Cole, G.P. Jarvik, L.G. Costa, Pharmacogenomic considerations of the paraoxonase polymorphisms, Pharmacogenomics 3 (2002), 341–348 (review)

    Article  PubMed  CAS  Google Scholar 

  63. V.H. Brophy, M.D. Hastings, J.B. Clendenning, R.J. Richter, G.P. Jarvik, C.E. Furlong, Polymorphisms in the human paraoxonase (PON1) promoter, Pharmacogenetics 11 (2001), 77–84.

    Article  PubMed  CAS  Google Scholar 

  64. L.G. Costa, T.B. Cole, C.E. Furlong, Polymorphisms of paraoxonase (PON1) and their significance in clinical toxicology of organophosphates, J Toxicol Clin Toxicol 41 (2003), 37–45.

    Article  PubMed  CAS  Google Scholar 

  65. L.G. Costa, T.B. Cole, A. Vitalone, C.E. Furlong, Measurement of paraoxonase (PON1) status as a potential biomarker of susceptibility to organophosphate toxicity, Clin Chim Acta 352 (2005), 37–47 (review).

    Article  PubMed  CAS  Google Scholar 

  66. T.B. Cole, R.L. Jampsa, B.J. Walter, T.L. Arndt, R.J. Richter, D.M. Shih, A. Tward, A.J. Lusis, R.M. Jack, L.G. Costa, C.E. Furlong, Expression of human paraoxonase (PON1) during development, Phar-macogenetics 13 (2003), 357–364.

    CAS  Google Scholar 

  67. L.G. Costa, R.J. Richter, W.F. Li, T. Cole, M. Guizzetti, C.E. Furlong, Paraoxonase (PON1) as a bio-marker of susceptibility for organophosphate toxicity, Biomarkers 8 (2003), 1–12.

    Article  PubMed  CAS  Google Scholar 

  68. L.G. Costa, A. Vitalone, T.B. Cole, C.E. Furlong, Modulation of paraoxonase (PON1) activity, Bio-chem Pharmacol 69 (2005), 541–550.

    Article  CAS  Google Scholar 

  69. L.G. Costa, W.F. Li, R. Richter, D.M. Shid, A.J. Lusis, C.E. Furlong, PON1 and Organophosphate Toxicity, PON1 in Health and Disease, L.G. Costa, C.E. Furlong Editors. Kluwer, Norwell, MA (2002), 165–183.

    Google Scholar 

  70. L.G. Sokolovskaya, L.V. Sigolaeva, A.V. Eremenko, I.N. Kurochkin, G.F. Makhaeva, V.V. Malygin, I.E. Zykova, V.I. Kholstov, N.V. Zavyalova, Family of biosensor analyzers for assessment of “esterase status” of organism, Chem Biol Defence (Russian) #1–2 (13–14) (2004), 21–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Makhaeva, G. et al. (2009). Blood Esterases as a Complex Biomarker for Exposure to Organophosphorus Compounds. In: Dishovsky, C., Pivovarov, A. (eds) Counteraction to Chemical and Biological Terrorism in East European Countries. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2342-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2342-1_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2341-4

  • Online ISBN: 978-90-481-2342-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics