Skip to main content

Progress on New Hepatitis C Virus Targets: NS2 and NS5A

  • Conference paper

Abstract

Hepatitis C virus (HCV) is a major global health problem, affecting about 170 million people worldwide. Chronic infection can lead to cirrhosis and liver cancer. The replication machine of HCV is a multi-subunit membrane associated complex, consisting of nonstructural proteins (NS2-5B), which replicate the viral RNA genome. The structures of NS5A and NS2 were recently determined. NS5A is an essential replicase component that also modulates numerous cellular processes ranging from innate immunity to cell growth and survival. The structure reveals a novel protein fold, a new zinc coordination motif, a disulfide bond and a dimer interface. Analysis of molecular surfaces suggests the location of the membrane interaction surface of NS5A, as well as hypothetical protein and RNA binding sites. NS2 is one of two virally encoded proteases that are required for processing the viral polyprotein into the mature nonstructural proteins. NS2 is a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer and the nucleophilic cysteine by the other. The C-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. The structure also reveals possible sites of membrane interaction, a rare cis-proline residue, and highly conserved dimer contacts. The novel features of both structures have changed the current view of HCV polyprotein replication and present new opportunities for antiviral drug design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, I. L., K. Nadassy, and S. J. Wodak. 1998. Analysis of zinc binding sites in protein crystal structures. Protein Sci 7:1700–16.

    Article  Google Scholar 

  2. Blight, K., A. Kolykhalov, and C. Rice. 2000. Efficient initiation of HCV RNA replication in cell culture. Science 290:1972–4.

    Article  ADS  Google Scholar 

  3. Boatright, K. M., and G. S. Salvesen. 2003. Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–31.

    Article  Google Scholar 

  4. Brass, V., E. Bieck, R. Montserret, B. Wolk, J. A. Hellings, H. E. Blum, F. Penin, and D. Moradpour. 2002. An amino-terminal amphipathic alpha-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. J Biol Chem 277:8130–9.

    Article  Google Scholar 

  5. Brown, R. S. 2005. Hepatitis C and liver transplantation. Nature 436:973–8.

    Article  ADS  Google Scholar 

  6. Choi, J., K. J. Lee, Y. Zheng, A. K. Yamaga, M. M. Lai, and J. H. Ou. 2004. Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology 39:81–9.

    Article  Google Scholar 

  7. Dimitrova, M., I. Imbert, M. P. Kieny, and C. Schuster. 2003. Protein—protein interactions between hepatitis C virus nonstructural proteins. J Virol 77:5401–14.

    Article  Google Scholar 

  8. Elazar, M., K. H. Cheong, P. Liu, H. B. Greenberg, C. M. Rice, and J. S. Glenn. 2003. Amphipathic helix-dependent localization of NS5A mediates hepatitis C virus RNA replication. J Virol 77:6055–61.

    Article  Google Scholar 

  9. Engh, R., and R. Huber. 1991. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Cryst. A 47:337–45.

    Article  Google Scholar 

  10. Evans, M. J., C. M. Rice, and S. P. Goff. 2004. Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. Proc Natl Acad Sci USA 101:13038–43.

    Article  ADS  Google Scholar 

  11. Fried, M. W., M. L. Shiffman, K. R. Reddy, C. Smith, G. Marinos, F. L. Goncales, Jr., D. Haussinger, M. Diago, G. Carosi, D. Dhumeaux, A. Craxi, A. Lin, J. Hoffman, and J. Yu. 2002. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347:975–82.

    Article  Google Scholar 

  12. Gong, G., G. Waris, R. Tanveer, and A. Siddiqui. 2001. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci USA 98:9599–604.

    Article  ADS  Google Scholar 

  13. Grakoui, A., D. W. McCourt, C. Wychowski, S. M. Feinstone, and C. M. Rice. 1993. A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci USA 90:10583–7.

    Article  ADS  Google Scholar 

  14. Hijikata, M., H. Mizushima, T. Akagi, S. Mori, N. Kakiuchi, N. Kato, T. Tanaka, K. Kimura, and K. Shimotohno. 1993. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol 67:4665–75.

    Google Scholar 

  15. Hijikata, M., H. Mizushima, Y. Tanji, Y. Komoda, Y. Hirowatari, T. Akagi, N. Kato, K. Kimura, and K. Shimotohno. 1993. Proteolytic processing and membrane association of putative nonstructural proteins of hepatitis C virus. Proc Natl Acad Sci USA 90:10773–7.

    Article  ADS  Google Scholar 

  16. Holm, L., and C. Sander. 1996. Mapping the protein universe. Science 273:595–603.

    Article  ADS  Google Scholar 

  17. Huang, L., J. Hwang, S. D. Sharma, M. R. Hargittai, Y. Chen, J. J. Arnold, K. D. Raney, and C. E. Cameron. 2005. Hepatitis C virus nonstructural protein 5A (NS5A) is an RNA- binding protein. J Biol Chem 280:36417–28.

    Article  Google Scholar 

  18. Jones, C. T., C. L. Murray, D. K. Eastman, J. Tassello, and C. M. Rice. 2007. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol 81:8374–83.

    Article  Google Scholar 

  19. Jones, S., and J. M. Thornton. 1996. Principles of protein-protein interactions. Proc Natl Acad Sci USA 93:13–20.

    Article  ADS  Google Scholar 

  20. Kim, J. L., K. A. Morgenstern, C. Lin, T. Fox, M. D. Dwyer, J. A. Landro, S. P. Chambers, W. Markland, C. A. Lepre, E. T. O'Malley, S. L. Harbeson, C. M. Rice, M. A. Murcko, P. R. Caron, and J. A. Thomson. 1996. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–55.

    Article  Google Scholar 

  21. Kolykhalov, A. A., K. Mihalik, S. M. Feinstone, and C. M. Rice. 2000. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Virol 74:2046–51.

    Article  Google Scholar 

  22. Kubo, Y., K. Takeuchi, S. Boonmar, T. Katayama, Q. L. Choo, G. Kuo, A. J. Weiner, D. W. Bradley, M. Houghton, I. Saito, and et al. 1989. A cDNA fragment of hepatitis C virus isolated from an implicated donor of post-transfusion non-A, non-B hepatitis in Japan. Nucleic Acids Res 17:10367–72.

    Article  Google Scholar 

  23. Leichert, L. I., and U. Jakob. 2004. Protein thiol modifications visualized in vivo. PLoS Biol 2:e333.

    Article  Google Scholar 

  24. Li, P. P., A. Nakanishi, S. W. Clark, and H. Kasamatsu. 2002. Formation of transitory intrachain and interchain disulfide bonds accompanies the folding and oligomerization of simian virus 40 Vp1 in the cytoplasm. Proc Natl Acad Sci USA 99:1353–8.

    Article  ADS  Google Scholar 

  25. Lindenbach, B. D., Thiel, H. -J., Rice, C. M. 2007. Flavirviridae: The viruses and their replication. In D. M. Knipe (ed.), Fields Virology, 5th ed. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  26. Lohmann, V., F. Korner, A. Dobierzewska, and R. Bartenschlager. 2001. Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75:1437–49.

    Article  Google Scholar 

  27. Lorenz, I. C., J. Marcotrigiano, T. G. Dentzer, and C. M. Rice. 2006. Structure of the catalytic domain of the hepatitis C virus NS2-3 protease. Nature 442:831–5.

    Article  ADS  Google Scholar 

  28. Love, R. A., H. E. Parge, J. A. Wickersham, Z. Hostomsky, N. Habuka, E. W. Moomaw, T. Adachi, and Z. Hostomska. 1996. The crystal structure of hepatitis C virus NS3 protei- nase reveals a trypsin-like fold and a structural zinc binding site. Cell 87:331–42.

    Article  Google Scholar 

  29. Macdonald, A., and M. Harris. 2004. Hepatitis C virus NS5A: tales of a promiscuous protein. J Gen Virol 85:2485–502.

    Article  Google Scholar 

  30. Ostergaard, H., C. Tachibana, and J. R. Winther. 2004. Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166:337–45.

    Article  Google Scholar 

  31. Pallaoro, M., A. Lahm, G. Biasiol, M. Brunetti, C. Nardella, L. Orsatti, F. Bonelli, S. Orru, F. Narjes, and C. Steinkuhler. 2001. Characterization of the hepatitis C virus NS2/3 processing reaction by using a purified precursor protein. J Virol 75:9939–46.

    Article  Google Scholar 

  32. Penin, F., V. Brass, N. Appel, S. Ramboarina, R. Montserret, D. Ficheux, H. E. Blum, R. Bartenschlager, and D. Moradpour. 2004. Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A. J Biol Chem 279:40835–43.

    Article  Google Scholar 

  33. Qadri, I., M. Iwahashi, J. M. Capasso, M. W. Hopken, S. Flores, J. Schaack, and F. R. Simon. 2004. Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. Biochem J 378:919–28.

    Article  Google Scholar 

  34. Reed, K. E., A. Grakoui, and C. M. Rice. 1995. Hepatitis C virus-encoded NS2-3 protease: cleavage-site mutagenesis and requirements for bimolecular cleavage. J Virol 69:4127–36.

    Google Scholar 

  35. Rho, J., S. Choi, Y. R. Seong, W. K. Cho, S. H. Kim, and D. S. Im. 2001. Prmt5, which forms distinct homo-oligomers, is a member of the protein-arginine methyltransferase family. J Biol Chem 276:11393–401.

    Article  Google Scholar 

  36. Santolini, E., L. Pacini, C. Fipaldini, G. Migliaccio, and N. Monica. 1995. The NS2 protein of hepatitis C virus is a transmembrane polypeptide. J Virol 69:7461–71.

    Google Scholar 

  37. Shimakami, T., M. Hijikata, H. Luo, Y. Y. Ma, S. Kaneko, K. Shimotohno, and S. Murakami. 2004. Effect of interaction between hepatitis C virus NS5A and NS5B on hepatitis C virus RNA replication with the hepatitis C virus replicon. J Virol 78:2738–48.

    Article  Google Scholar 

  38. Shirota, Y., H. Luo, W. Qin, S. Kaneko, T. Yamashita, K. Kobayashi, and S. Murakami. 2002. Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. J Biol Chem 277:11149–55.

    Article  Google Scholar 

  39. Tan, S. L., and M. G. Katze. 2001. How hepatitis C virus counteracts the interferon response: the jury is still out on NS5A. Virology 284:1–12.

    Article  Google Scholar 

  40. Tellinghuisen, T. L., J. Marcotrigiano, A. E. Gorbalenya, and C. M. Rice. 2004. The NS5A protein of hepatitis C virus is a zinc metalloprotein. J Biol Chem 279:48576–87.

    Article  Google Scholar 

  41. Tellinghuisen, T. L., and C. M. Rice. 2002. Interaction between hepatitis C virus proteins and host cell factors. Curr Opin Microbiol 5:419–27.

    Article  Google Scholar 

  42. Thibeault, D., R. Maurice, L. Pilote, D. Lamarre, and A. Pause. 2001. In vitro characterization of a purified NS2/3 protease variant of hepatitis C virus. J Biol Chem 276:46678–84.

    Article  Google Scholar 

  43. Tu, H., L. Gao, S. T. Shi, D. R. Taylor, T. Yang, A. K. Mircheff, Y. Wen, A. E. Gorbalenya, S. B. Hwang, and M. M. Lai. 1999. Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. Virology 263:30–41.

    Article  Google Scholar 

  44. Weiner, A. J., G. Kuo, D. W. Bradley, F. Bonino, G. Saracco, C. Lee, J. Rosenblatt, Q. L. Choo, and M. Houghton. 1990. Detection of hepatitis C viral sequences in non-A, non-B hepatitis. Lancet 335:1–3.

    Article  Google Scholar 

  45. Wlodawer, A., and A. Gustchina. 2000. Structural and biochemical studies of retroviral proteases. Biochim Biophys Acta 1477:16–34.

    Article  Google Scholar 

  46. Wu, Z., N. Yao, H. V. Le, and P. C. Weber. 1998. Mechanism of autoproteolysis at the NS2-NS3 junction of the hepatitis C virus polyprotein. Trends Biochem Sci 23:92–4.

    Article  Google Scholar 

  47. Zhang, J., O. Yamada, T. Sakamoto, H. Yoshida, T. Iwai, Y. Matsushita, H. Shimamura, H. Araki, and K. Shimotohno. 2004. Down-regulation of viral replication by adenoviral- mediated expression of siRNA against cellular cofactors for hepatitis C virus. Virology 320:135–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Marcotrigiano, J. (2009). Progress on New Hepatitis C Virus Targets: NS2 and NS5A. In: Sussman, J.L., Spadon, P. (eds) From Molecules to Medicines. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2339-1_8

Download citation

Publish with us

Policies and ethics