Skip to main content

Mass Balance Models for Chemical Fate, Bioaccumulation, Exposure and Risk Assessment

  • Conference paper
Exposure and Risk Assessment of Chemical Pollution — Contemporary Methodology

Abstract

National and international regulatory programs seek to evaluate the potential hazards and risks of commercial chemicals to humans and the environment. There are relatively few measured laboratory and field based monitoring data available for the mandated assessments, thereby requiring the use of Quantitative Structure-Activity Relationships (QSARs) and mass balance models. The present study reviews mass balance models that are available to estimate chemical fate, transport and distribution in the physical environment, bioaccumulation in food webs and exposures and risks to ecological receptors and humans. The focus is on the assessment of organic chemicals using evaluative models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armitage JM, Cousins IT, Hauck M, Harbers JV, Huijbregts MAJ. 2007. Empirical evaluation of spatial and non-spatial European-scale multimedia fate models: Results and implications for chemical risk assessment. J Environ Monit 9, 572–581

    Article  CAS  Google Scholar 

  • Arnot JA, Gobas FAPC. 2003. A generic QSAR for assessing the bioaccumulation potential of organic chemicals in aquatic food webs. QSAR and Combinatorial Sci 22, 337–345

    Article  CAS  Google Scholar 

  • Arnot JA, Gobas FAPC. 2004. A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ Toxicol Chem 23, 2343–2355

    Article  CAS  Google Scholar 

  • Arnot JA, Gobas FAPC. 2006. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in fish. Environ Rev 14, 257–297

    Article  CAS  Google Scholar 

  • Arnot JA, Mackay D. 2008. Policies for chemical hazard and risk priority setting: Can persistence, bioaccumulation, toxicity and quantity information be combined? Environ Sci Technol 42, 4648–4654

    Article  CAS  Google Scholar 

  • Arnot JA, Mackay D, Webster E, Southwood JM. 2006. Screening level risk assessment model for chemical fate and effects in the environment. Environ Sci Technol 40, 2316–2313

    Article  CAS  Google Scholar 

  • Arnot JA, Mackay D, Parkerton TF, Bonnell M. 2008. A database of fish biotransformation rates for organic chemicals. Environ Toxicol Chem 27, 2263–2270

    Article  CAS  Google Scholar 

  • Arnot JA, Meylan W, Tunkel J, Howard PH, Mackay D, Boethling RS, Bonnell M. 2009. Predicting metabolic biotransformation rates for organic chemicals in fish. Environ Toxicol Chem in press: on-line January 16, 2009 DOI: 10.1897/08-289.1

    Google Scholar 

  • Barber MC, Suarez LA, Lassiter RR. 1991. Modelling bioaccumulation of organic pollutants in fish with an application to PCBs in Lake Ontario salmonids. Can J Fish Aquat Sci 48, 318–337

    Article  CAS  Google Scholar 

  • Bennett DH, McKone TE, Evans JS, Nazaroff WW, Margni MD, Jolliet O, Smith KR. 2002. Defining intake fraction. Environ Sci Technol 36, 206a–211a

    Article  Google Scholar 

  • Birak P, Yurk J, Adeshina F, Lorber M, Pollard K, Choudhury H, Kroner S. 2001. Travis and arms revisited: A second look at a widely used bioconcentration algorithm. Toxicol Ind Health 17, 163–175

    Article  CAS  Google Scholar 

  • Burkhard LP. 2003. Factors influencing the design of bioaccumulation factor and biota-sediment accumulation factor field studies. Environ Toxicol Chem 22, 351–360

    Article  CAS  Google Scholar 

  • Cahill T, Cousins I, Mackay D. 2003. Development and application of a generalized physiologically based pharmacokinetic model for multiple environmental contaminants. Environ Toxicol Chem 22, 26–34

    Article  CAS  Google Scholar 

  • Campfens J, Mackay D. 1997. Fugacity-based model of PCB bioaccumulation in complex food webs. Environ Sci Technol 31, 577–583

    Article  CAS  Google Scholar 

  • Connell DW, Hawker DW. 1988. Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish. Ecotoxicol Environ Saf 16, 242–257

    Article  CAS  Google Scholar 

  • Connolly JP, Pedersen CG. 1988. A thermodynamic-based evaluation of organic chemical accumulation in aquatic organisms. Environ Sci Technol 22, 99–103

    Article  CAS  Google Scholar 

  • Cowan CE, Mackay D, Feijtel TCJ, van de Meent D, Di Guardo A, Davies J, Mackay N. 1995. The multi-media fate model: A vital tool for predicting the fate of chemicals. Proceedings of a workshop organized by the society of Environ Toxicol Chem (SETAC). Pensacola, FL, SETAC.

    Google Scholar 

  • Cowan-Ellsberry CE, McLachlan MS, Arnot JA, MacLeod MJ, McKone TE, Wania F. 2009. Modeling exposure to persistent chemicals in hazard and risk assessment. Setac pellston workshop proceedings. Integrated Environ Assess Management in press

    Google Scholar 

  • CREM. 2008. Guidance on the development, evaluation and application of environmental models. Washington, DC, Council for Regulatory Environmental Modeling, U.S. Environmental Protection Agency, 95

    Google Scholar 

  • Czub G, McLachlan MS. 2004. Bioaccumulation potential of persistent organic chemicals in humans. Environ Sci Technol 38, 2406–2412

    Article  CAS  Google Scholar 

  • Den Hollander HA, Van Eijkeren JCH, Van de Meent D. 2004. Simplebox 3.0: Multimedia Mass Balance Model for Evaluating the Fate of Chemicals in the Environment. Bilthoven, The Netherlands, National Institute of Public Health and the Environment

    Google Scholar 

  • European Commission. 2001. White Paper on the Strategy for a Future Chemicals Policy. Brussels, BE, European Commission, 32

    Google Scholar 

  • Gobas FAPC. 1993. A model for predicting the bioaccumulation of hydrophobic organic chemicals in aquatic food-webs: Application to Lake Ontario. Ecol Modell 69, 1–17

    Article  CAS  Google Scholar 

  • Gobas FAPC, Kelly BC, Arnot JA. 2003. Quantitative structure-activity relationships for predicting the bioaccumulation of pops in terrestrial food webs. QSAR and Combinatorial Sci 22, 329–336

    Article  CAS  Google Scholar 

  • Government of Canada. 1999. Canadian Environmental Protection Act, 1999. Canada Gazette Part III. 22

    Google Scholar 

  • Hendriks AJ, van der Linde A, Cornelissen G, Sijm DTHM. 2001. The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol-water partition ratio and species weight. Environ Toxicol Chem 20, 1399–1420

    Article  CAS  Google Scholar 

  • Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM. 1991. Handbook of Environmental Degradation Rates. Chelsea, MI, Lewis Publishers

    Google Scholar 

  • Kelly BC, Gobas FAPC. 2001. Bioaccumulation of persistent organic pollutants in lichen-caribou-wolf food chains of Canada's central and western arctic. Environ Sci Technol 35, 325–334

    Article  CAS  Google Scholar 

  • Kelly BC, Gobas FAPC. 2003. An arctic terrestrial food-chain bioaccumulation model for persistent organic pollutants. Environ Sci Technol 37, 2966–2974

    Article  CAS  Google Scholar 

  • Kelly BC, Ikonomou M, Blair JD, Morin AE, Gobas FAPC. 2007. Food web-specific biomagnification of persistent organic pollutants. Science 317, 236–239

    Article  CAS  Google Scholar 

  • Mackay D. 1982. Correlation of bioconcentration factors. Environ Sci Technol 16, 274–278

    Article  CAS  Google Scholar 

  • Mackay D. 2001. Multimedia Environmental Models: The Fugacity Approach – Second Edition. Boca Raton, FL, Lewis Publishers

    Google Scholar 

  • Mackay D, Fraser A. 2000. Bioaccumulation of persistent organic chemicals: Mechanisms and models. Environ Poll 110, 375–391

    Article  CAS  Google Scholar 

  • Mackay D, Reid L. 2008. Local and distant residence times of contaminants in multi-compartment models: Part I theoretical basis. Environ Poll 56, 1196–1203

    Article  Google Scholar 

  • Mackay D, Shiu WY, Ma KC. 2000. Physical-Chemical Properties and Environmental Fate Handbook. Boca Raton, FL, CRC Press

    Google Scholar 

  • MacLeod M, McKone TE. 2004. Multimedia persistence as an indicator of potential for population-level intake of environmental contaminants. Environ Toxicol Chem 23, 2465–2472

    Article  CAS  Google Scholar 

  • MacLeod M, Woodfine D, Mackay D, McKone T, Bennett D, Maddalena R. 2001. BETR North America: A regionally segmented multimedia contaminant fate model for North America. Environ Sci Poll Res 8, 156–163

    Article  CAS  Google Scholar 

  • MacLeod M, Fraser A, Mackay D. 2002. Evaluating and expressing the propagation of uncertainty in chemical fate and bioaccumulation models. Environ Toxicol Chem 21, 700–709

    Article  CAS  Google Scholar 

  • MacLeod M, Riley WJ, McKone TE. 2005. Assessing the influence of climate variability on atmospheric concentrations of polychlorinated biphenyls using a global-scale mass balance model (BETR-Global). Environ Sci Technol 39, 6749–6756

    Article  CAS  Google Scholar 

  • Maeder V, Escher BI, Scheringer M, Hungerbuhler K. 2004. Toxic ratio as an indicator of the intrinsic toxicity in the assessment of persistent, bioaccumulative, and toxic chemicals. Environ Sci Technol 38, 3659–3666

    Article  CAS  Google Scholar 

  • Matthies M, Berding V, Beyer A. 2004. Probabilistic uncertainty analysis of the European union system for the evaluation of substances multimedia regional distribution model. Environ Toxicol Chem 23, 2494–2502

    Article  CAS  Google Scholar 

  • McCarty LS, Mackay D. 1993. Enhancing ecotoxicological modeling and assessment. Environ Sci Technol 27, 1719–1728

    Article  Google Scholar 

  • McKone TE. 1993. CalTOX, a multimedia total exposure model for hazardous-waste sites. Washington, DC, U.S. Department of Energy

    Google Scholar 

  • McKone TE, MacLeod M. 2003. Tracking multiple pathways of human exposure to persistent multimedia pollutants: Regional, continental, and global-scale models. Ann Rev Environ Res 28, 463–492

    Article  Google Scholar 

  • McKone TE, Castorina R, Harnly ME, Kuwabara Y, Eskenazi B, Bradmanm A. 2007. Merging models and biomonitoring data to characterize sources and pathways of human exposure to organophosphorus pesticides in the Salinas valley of California. Environ Sci Technol 41, 3233–3240

    Article  CAS  Google Scholar 

  • Moore DRJ, Breton RL, MacDonald DB. 2003. A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish. Environ Toxicol Chem 22, 1799–1809

    Article  CAS  Google Scholar 

  • Muir DCG, Howard PH. 2006. Are there other persistent organic pollutants? A challenge for environmental chemists. Environ Sci Technol 40, 7157–7166

    Article  CAS  Google Scholar 

  • Neely WB, Branson DR, Blau GE. 1974. Partition coefficients to measure bioconcentration potential of organic chemicals in fish. Environ Sci Technol 8, 1113–1115

    Article  CAS  Google Scholar 

  • NRC. 2007. Models in environmental regulatory decision making. Washington, DC, National Research Council

    Google Scholar 

  • Paterson S, Mackay D. 1987. A steady-state fugacity-based pharmacokinetic model with simultaneous multiple exposure routes. Environ Toxicol Chem 6, 395–408

    Article  CAS  Google Scholar 

  • Pennington DW, Margni M, Payet J, Jolliet O. 2006. Risk and regulatory hazard-based toxicological effect indicators in life-cycle assessment (LCA). Human Ecol Risk Assess 12, 450–475

    Article  CAS  Google Scholar 

  • Rikken MGJ, Lijzen JPA. 2004. Update of Risk Assessment Models for the Indirect Human Exposure. Bilthoven, The Netherlands, RIVM

    Google Scholar 

  • Thomann RV. 1989. Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ Sci Technol 23, 699–707

    Article  CAS  Google Scholar 

  • Toose L, Woodfine DG, MacLeod M, Mackay D, Gouin J. 2004. BETR-World: A geographically explicit model of chemical fate: Application to transport of a-HCH to the arctic. Environ Poll 128, 223–240

    Article  CAS  Google Scholar 

  • Trapp S, Matthies M. 1995. Generic one-compartment model for uptake of organic chemicals by foliar vegetation. Environ Sci Technol 29, 2333–2338

    Article  CAS  Google Scholar 

  • Travis CC, Arms AD. 1988. Bioconcentration of organics in beef, milk and vegetation. Environ Sci Technol 22, 271–274

    Article  CAS  Google Scholar 

  • UNEP. 2001. Final Act of the Conference of Plenipotentiaries on the Stockholm Convention on Persistent Organic Pollutants. Geneva, Switzerland, United Nations Environment Program

    Google Scholar 

  • U.S. EPA. 1976. Toxic Substances Control Act (1976). Washington, DC, U.S. Environmental Protection Agency

    Google Scholar 

  • Veith GD, Defoe DL, Bergstedt BV. 1979. Measuring and estimating the bioconcentration factor of chemicals in fish. J Fish Res Board Can 36, 1040–1048

    CAS  Google Scholar 

  • Vermeire TG, Rikken M, Attias L, Boccardi P, Boeije G, Brooke D, de Bruijn J, Comber M, Dolan B, Fischer S, Heinemeyer G, Koch V, Lijzen J, Muller B, Murray-Smith R, Tadeo J. 2005. European union system for the evaluation of substances (EUSES): The second version. Chemosphere 59, 473–485

    Article  Google Scholar 

  • Wania F. 2003. Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions. Environ Sci Technol 37, 1344–1351

    Article  CAS  Google Scholar 

  • Wania F, Breivik K, Persson NJ, McLachlan MS. 2006. COZMO-POP 2 – a fugacity-based dynamic multi-compartmental mass balance model of the fate of persistent organic pollutants. Environ Modell Soft 21, 868–884

    Article  Google Scholar 

  • Webster E, Mackay D, Di Guardo A, Kane D, Woodfine D. 2004. Regional differences in chemical fate model outcome. Chemosphere 55, 1361–1376

    Article  CAS  Google Scholar 

  • Webster E, Mackay D, Wania F, Arnot J, Gobas F, Gouin T, Hubbarde J, Bonnell M. 2005. Development and Application of Models of Chemical Fate in Canada: Modelling Guidance Document. Peterborough, ON, Canadian Environmental Modelling Centre, Trent University, 129

    Google Scholar 

  • Wegmann F, Cavin L, MacLeod M, Scheringer M, Hungerbuehler K. 2009. The OECD software tool for screening chemicals for persistence and long-range transport potential. Environ Modell Soft 24, 228–237

    Article  Google Scholar 

  • WHO. 2004. IPCS Risk Assessment Terminology. Geneva, Switzerland, IPCS International Programme on Chemical Safety, 122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Arnot, J.A. (2009). Mass Balance Models for Chemical Fate, Bioaccumulation, Exposure and Risk Assessment. In: Simeonov, L.I., Hassanien, M.A. (eds) Exposure and Risk Assessment of Chemical Pollution — Contemporary Methodology. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2335-3_5

Download citation

Publish with us

Policies and ethics