Skip to main content

Geostatistical Modelling of Wildlife Populations: A Non-stationary Hierarchical Model for Count Data

  • Chapter
  • First Online:

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 16))

Abstract

We propose a hierarchical model coupled to geostatistics to deal with a non-gaussian data distribution and take explicitly into account complex spatial structures (i.e. trends, patchiness and random fluctuations). A common characteristic of animal count data is a distribution that is both zero-inflated and heavy tailed. In such cases, empirical variograms are no more robust and most structural analyses result in poor and noisy estimated spatial variogram structures. Thus kriged maps feature a broad variance of prediction. Moreover, due to the heterogeneity of wildlife population habitats, a nonstationary model is often required. To avoid these difficulties, we propose a hierarchical model that assumes that the count data follow a Poisson distribution given a theoretical sighting density which is a latent variable to be estimate. This density is modelled as the product of a positive long range trend by a positive stationary random field, characterized by a unit mean and a variogram function. A first estimate of the drift is used to obtain an estimate of the variogram of residuals including a correction term for variance coming from the Poisson distribution and weights due to the non-constant spatial mean. Then a kriging procedure similar to a modified universal kriging is implemented to directly map the latent density from raw count data. An application on fin whale data illustrates the effectiveness of the method in mapping animal density in a context that is presumably non-stationary.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Briggs K, Tyler W, Lewis D (1985) Comparison of ships and aerial surveys of birds at sea. J Wildl Manag 49:405–411

    Article  Google Scholar 

  • Caughley G, Grigg G (1981) Surveys of the distribution and density of kangaroos in the pastoral zone in south australian and their bearing on the feasibility of aerial survey in large remote areas. Aust Wildl Res 8:1–11

    Article  Google Scholar 

  • Clarke K, Green R (1998) Statistical design and analysis for a “biological effects” study. Mar Ecol Prog Ser 46:213–226

    Article  Google Scholar 

  • Cunningham R, Lindenmayer D (2005) Modelling count data of rare species: some statistical issues. Ecology 86(5):1135–1142

    Article  Google Scholar 

  • Diggle J-P, Tawn J, Moyeed R (1998) Model based geostatistics. Appl Stat 47:299–350

    Google Scholar 

  • Dubroca L, André J-M, Beaubrun P, Bonnin E, David L, Durbec J-P, Monestiez P, Guinet C (2004) Summer fin whales (Balaenoptera physalus) distribution in relation to oceanographic conditions: implications for conservation. CIESM Workshop Monographs n 25. Monaco pp 77–84. (Proc. Venice, 28–31 January 2004)

    Google Scholar 

  • Flechter D, Mackenzie D, Villouta E (2005) Modelling skewed data with many zeros: a simple approach combining ordinary and logistic regression. Environ Ecol Stat 12:45–54

    Article  Google Scholar 

  • Forcada J, Aguilar A, Hammon P, Pastor X, Aguilar R (1996) Distribution and abundance of fin whales (balaenoptera physalus) in the western mediterranean sea during the summer. J Zool 238:23–34. Part 1

    Article  Google Scholar 

  • Fortin M, Agrawal A (2005) Landscape ecology come of age. Ecology 86:1965–1966

    Article  Google Scholar 

  • Fortin M-J, Dale MRT (2005) Spatial analysis: a guide for ecologists. Cambridge: Cambridge University Press

    Google Scholar 

  • Grigg G, Beard L, Alexander P, Pople A, Cairns S (1999) Survey kangaroos in south australia 1978–1998 a brief report focusing on methodology. Aust Zool 31:292–300

    Google Scholar 

  • Hammond P, Berggren P, Benke H, Borchers D, Collet A, Heide-Jorgensen M, Heimlich S, Hiby A, Leopold M, Oien N (2002) Abundance of harbour porpoise and other cetaceans in the north sea and adjacent waters. J Appl Ecol 39:361–376

    Article  Google Scholar 

  • Isaak D, Russel R (2006) Network-scale spatial and temporal variation in chinook salmon (oncorhynchus tshawytscha) redd distributions: patterns inferred from spatially continuous replicate surveys. Can J Fisheries and Aquat Sci 63:285–296

    Article  Google Scholar 

  • Kingsley M, Reeves R (1998) Aerial surveys of cetaceans in the gulf of st lawrence in 1995 and 1996. Can J Zool 76:1529–1550

    Article  Google Scholar 

  • Kotliar N, Wiens J (1990) Multiples scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260

    Article  Google Scholar 

  • Latimer M, Wu S, Gelfand A, Silander J (2006) Building stistical models to analyse species distributions. Ecol Appl 16(1):33–50

    Article  Google Scholar 

  • Levin S (1992) The problem of pattern in ecology. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Martin TG, Brendan A, Wintle J, Rhodes R, Kuhnert PM, Field S, Low-Choy S, Tyre A, Possingham HP (2005) Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol Lett 8:1236–1254

    Article  Google Scholar 

  • Monestiez P, Dubroca L, Bonnin E, Durbec J-P, Guinet C (2006) Geostatistical modelling of spatial distribution of Balaenoptera phylasus in the northwertern mediterranean sea from sparse count data and heterogeneous observation efforts. Ecol Model 193:615–628

    Article  Google Scholar 

  • Peel M, Bothma J (1995) Comparison of the accuracy of four methods commonly used to count impala. S Afr J Wildl Res 25:41–43

    Google Scholar 

  • Pollock K, Marsh H, Lawler I, Alldredge M (2006) Estimating animal abundance in heterogeneous environments : an application to aerial surveys for dugongs. J Wildl Manag 70(1):255–262

    Article  Google Scholar 

  • Pollock K, Nichols J, Simons T, Farnsworth G, Bailey L, Sauer J (2002) Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13:105–119

    Article  Google Scholar 

  • Royle J, Nichols J, Kry M (2005) Modelling occurence and abundance of species when detection is imperfect. Oikos 110:353–359

    Article  Google Scholar 

  • Tasker M, Jones P, Dixon T, Blake B (1984) Counting seabird at sea from ships: a review of methods employed and a suggestion for standardized approach. The Auk 101:567–577

    Google Scholar 

  • Thogmartin W, Sauer J, Knutson M (2004) A hierarchical spatial model of avian abundance with the application to cerulean warblers. Ecol Appl 14(6):1766–1779

    Article  Google Scholar 

  • Ver Hoef J, Frost K (2003) A bayesian hierarchical model for monitoring harbor seals changes in prince william sound, alaska. Environ Ecol Stat 10:201–219

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics 3rd edn. Springer, Berlin

    Google Scholar 

  • Wright I, Reynolds J, Ackerman B, Ward L, Weigle B (2002) Trends in manatee (trichechus manatus latirostris) counts and habitat use in tampa bay 1987–1994: implication for conservation. Mar Mammals Sci 18:259–274

    Article  Google Scholar 

Download references

Acknowledgements

Concerning the case study, the authors would like to acknowledge Laurent Dubroca (Dubroca et al., 2004) for providing access to a part of the original dataset. The authors are also indebted to all people and organisations who contributed to the sighting data collection and collation: the Centre de Recherche sur les Mammifres Marins (CRMM), the CETUS, the Commission Internationale pour l’Exploration Scientifique de la mer Méditerranée (CIESM), Conservation Information Recherche sur les Cétacés (CIRC), Delphinia Sea Conservation, the Ecole Pratique des Hautes Etudes (EPHE) particularly P.C. Beaubrun, L. David and N. Di-Mglio, the Groupe d’Etude des Cétacés de Méditerranée (GECEM), the Groupe de Recherche sur les Cétacés (GREC), the Institut Franais de Recherche pour l’Exploitation de la Mer (IFREMER), the Muse Océanographique de Monaco, the Réserve Internationale en Mer Méditerranée Occidentale (RIMMO), the Supreme Allied Commander Atlantic Undersea Research Centre (SACLANT), the Société de Navigation Corse Méditerranée (SNCM), the Swiss Cetacean Society (SCS) and the WWF-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwige Bellier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bellier, E., Monestiez, P., Guinet, C. (2010). Geostatistical Modelling of Wildlife Populations: A Non-stationary Hierarchical Model for Count Data. In: Atkinson, P., Lloyd, C. (eds) geoENV VII – Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2322-3_1

Download citation

Publish with us

Policies and ethics