Skip to main content

Symbiosis Research as a Novel Strategy for Insect Pest Control

  • Chapter
  • First Online:
Biorational Control of Arthropod Pests

Abstract

Insects cause problems in two ways they either physically damage or transmit disease. In both cases killing insects can be a very effective way of stopping the problem, but different strategies can be deployed to effect control. In some cases, the control of the insect problem needs to be immediate kill or “knockdown”, but often more subtle methods are more advantageus in controlling the problem, i.e. decreasing longevity or modifying behaviour. Good pest management strategies seek to identify and exploit the vulnerable points of the insect’s lifecycle or the disease they vector. This means that all control measures must be built on a solid understanding of the pest’s biology and the economics of the problems they cause. This chapter will explore how microbial symbionts could be utilised in pest management. Although symbiont research may not provide a “silver bullet” it will provide important contributions to aid the control of insect pests within an integrated framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JR, Schmidtmann ET, Azad AF (1990) Infection of colonized cat fleas, Ctenocephalides felis (Bouche), with a Rickettsia-like microorganism. Am J Tropi Med Hyg 43: 400–409

    CAS  Google Scholar 

  • Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32: 402–407

    CAS  PubMed  Google Scholar 

  • Aksoy S (1995) Wigglesworthia gen. Nov and Wigglesworthia glossinidia sp. Nov, taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse-flies. Int J Syst Bacteriol 45: 848–851

    CAS  PubMed  Google Scholar 

  • Aksoy S (2000) Tsetse – a haven for microorganisms. Parasitol Today 16: 114–118

    CAS  PubMed  Google Scholar 

  • Allen JM, Reed DL, Perotti MA, Braig HR (2007) Evolutionary relationships of “Candidatus riesia spp.,” Endosymbiotic enterobacteriaceae living within hematophagous primate lice. Appl Environ Microbiol 73: 1659–1664

    CAS  PubMed  Google Scholar 

  • Baker RD, Maudlin I, Milligan PJM, Molyneux DH, Welburn SC (1990) The possible role of Rickettsia-like organisms in trypanosomiasis epidemiology. Parasitology 100: 209–217

    PubMed  Google Scholar 

  • Bandi C, Damiani G, Magrassi L, Grigolo A, Fani R, Sacchi L (1994) Flavobacteria as intracellular symbionts in cockroaches. Proc R Soc Lond Ser B-Biol Sci 257: 43–48

    CAS  Google Scholar 

  • Baumann L, Thao ML, Hess JM, Johnson MW, Baumann P (2002) The genetic properties of the primary endosymbionts of mealybugs differ from those of other endosymbionts of plant sap-sucking insects. Appl Environ Microbiol 68: 3198–3205

    CAS  PubMed  Google Scholar 

  • Beard CB, Dotson EM, Pennington PM, Eichler S, Cordon-Rosales C, Durvasula RV (2001) Bacterial symbiosis and paratransgenic control of vector-borne chagas disease, Kusadasi, Turkey

    Google Scholar 

  • Beard CB, Mason PW, Aksoy S, Tesh RB, Richards FF (1992) Transformation of an insect symbiont and expression of a foreign gene in the chagas-disease vector rhodnius-prolixus. Am J Trop Med Hyg 46: 195–200

    CAS  PubMed  Google Scholar 

  • Bordenstein SR, Paraskevopoulos C, Dunning Hotopp JC, Sapountzis P, Lo N, Bandi C, Tettelin H, Werren JH, Bourtzis K (2009) Parasitism and mutualism in Wolbachia: what the phylogenomic trees can and cannot say. Mol Biol Evol 26: 231–241β

    CAS  PubMed  Google Scholar 

  • Bourtzis K (2008) Wolbachia-based technologies for insect pest population control. Transgenesis and the management of vector-borne disease. Berlin, Springer-Verlag Berlin. 627: 104–113Helicoverpa zea http://www.chemecol.org/meetings/brazil/talks/oral1.htm#Bowers

    CAS  Google Scholar 

  • Bourtzis K, Nirgianaki A, Markakis G, Savakis C (1996) Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics 144: 1063–1073

    CAS  PubMed  Google Scholar 

  • Breeuwer JAJ (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani, Heredity, 79(1): 41–47

    Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience John Wiley & Sons, New York/London/Sydney

    Google Scholar 

  • Callaini G, Dallai R, Riparbelli MG (1997) Wolbachia-induced delay of paternal chromatin condensation does not prevent maternal chromosomes from entering anaphase in incompatible crosses of Drosophila simulans. J Cell Sci 110: 271–280

    CAS  PubMed  Google Scholar 

  • Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua C, Gardner SL, Franceschi A, Bandi C (2004) Mapping the presence of wolbachia pipientis on the phylogeny of filarial nematodes: Evidence for symbiont loss during evolution, Darwin, AustraliaMusca domestica

    Google Scholar 

  • Chen DQ, Campbell BC, Purcell AH (1996) A new rickettsia from a herbivorous insect, the pea aphid, Acyrthosiphon pisum (Harris). Curr Microbiol 33: 123–128

    CAS  PubMed  Google Scholar 

  • Chen DQ, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, a-kondoi. Entomologia Experimentalis Et Applicata 95: 315–323

    Google Scholar 

  • Chen DQ, Purcell AH (1997) Occurrence and transmission of facultative endosymbionts in aphids. Curr Microbiol 34: 220–225

    CAS  PubMed  Google Scholar 

  • Chen XA, Li S, Aksoy S (1999) Concordant evolution of a symbiont with its host insect species: Molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol 48: 49–58

    CAS  PubMed  Google Scholar 

  • Cheng Q, Aksoy S (1999) Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbionts of tsetse flies. Insect Mol Biol 8: 125–132

    CAS  PubMed  Google Scholar 

  • Clarke DJ (2008) Photorhabdus: A model for the analysis of pathogenicity and mutualism. Cell Microbiol 10: 2159–2167

    CAS  PubMed  Google Scholar 

  • Clay K (1988) Fungal endophytes of grasses – a defensive mutualism between plants and fungi. Ecology 69: 10–16

    Google Scholar 

  • Dale C, Maudlin I (1999) Sodalis gen. nov. and Sodalis glossinidius sp. Nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol 49: 267–275

    CAS  PubMed  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126: 453–465

    CAS  PubMed  Google Scholar 

  • Dale C, Young SA, Haydon DT, Welburn SC (2001) The insect endosymbiont Sodalis glossinidius utilizes a type iii secretion system for cell invasion. Proc National Acad Sci U S A 98: 1883–1888

    CAS  Google Scholar 

  • Darby AC, Birkle LM, Turner SL, Douglas AE (2001) An aphid-borne bacterium allied to the secondary symbionts of whitefly. FEMS Microbiol Ecol 36: 43–50

    CAS  PubMed  Google Scholar 

  • Darby AC, Hall N (2008) Fast forward genetics. Nat Biotechnol 26: 1248–1249

    CAS  PubMed  Google Scholar 

  • Darby AC, Welburn SC (2005) Symbiont culture, CRC/Taylor & Francis, Boca Raton, FL/London

    Google Scholar 

  • De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the bt cry2aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19: 71–74

    CAS  PubMed  Google Scholar 

  • Degnan PH, Lazarus AB, Wernegreen JJ (2005) Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res 15: 1023–1033

    CAS  PubMed  Google Scholar 

  • Degnan PH, Moran NA (2008) Evolutionary genetics of a defensive facultative symbiont of insects: Exchange of toxin-encoding bacteriophage. Mol Ecol 17: 916–929

    CAS  PubMed  Google Scholar 

  • Dillon R, Charnley K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153: 503–509

    CAS  PubMed  Google Scholar 

  • Dillon RJ, Dillon VM (2004) The Gut Bacteria of Insects: Nonpathogenic Interactions. Annual Review of Entomology, 49: 71–92

    CAS  PubMed  Google Scholar 

  • Douglas A (1994) Symbiotic interactions, Oxford Science Publication, Oxford/New York/Tokyo

    Google Scholar 

  • Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc 64: 409–434

    CAS  PubMed  Google Scholar 

  • Douglas AE (1992) Requirement of pea aphids (Acyrthosiphon pisum) for their symbiotic bacteria. Entomologia Exp Appl 65: 195–198

    Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Ann Rev Entomol 43: 17–37

    CAS  Google Scholar 

  • Douglas AE (2007) Symbiotic microorganisms: Untapped resources for insect pest control. Trends Biotechnol 25: 338–342

    CAS  PubMed  Google Scholar 

  • Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Medigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21: 1307–1313

    CAS  PubMed  Google Scholar 

  • Duron O, Fort P, Weill M (2007) Influence of aging on cytoplasmic incompatibility, sperm modification and wolbachia density in culex pipiens mosquitoes. Heredity 98: 368–374

    CAS  PubMed  Google Scholar 

  • Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: An approach using transgenic symbiotic bacteria. Proc National Acad Sci U S A 94: 3274–3278

    CAS  Google Scholar 

  • Durvasula RV, Kroger A, Goodwin M, Panackal A, Kruglov O, Taneja J, Gumbs A, Richards FF, Beard CB, Cordon-Rosales C (1999) Strategy for introduction of foreign genes into field populations of chagas disease vectors. Ann Entomol Soc Am 92: 937–943

    CAS  Google Scholar 

  • Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E, Beard CB (2008) Genetic transformation of a corynebacterial symbiont from the chagas disease vector triatoma infestans. Exp Parasitol 119: 94–98

    CAS  PubMed  Google Scholar 

  • Dutton TJ, Sinkins SP (2004) Strain-specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions. Insect Mol Biol 13: 317–322

    CAS  PubMed  Google Scholar 

  • Epis S, Sassera D, Beninati T, Lo N, Beati L, Piesman J, Rinaldi L, McCoy KD, Torina A, Sacchi L, Clementi E, Genchi M, Magnino S, Bandi C (2008) Midichloria mitochondrii is widespread in hard ticks (ixodidae) and resides in the mitochondria of phylogenetically diverse species. Parasitology 135: 485–494

    CAS  PubMed  Google Scholar 

  • Favia G, Ricci I, Marzorati M, Negri I, Alma A, Sacchi L, Bandi C, Daffonchio D (2008) Bacteria of the genus Asaia: A potential paratransgenic weapon against malaria. Transg Manag Vector-Borne Dis. 627: 49–59

    CAS  Google Scholar 

  • Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29: 60–65

    Google Scholar 

  • Filichkin SA, Brumfield S, Filichkin TP, Young MJ (1997) In vitro interactions of the aphid endosymbiotic syml chaperonin with barley yellow dwarf virus. J Virol 71: 569–577

    CAS  PubMed  Google Scholar 

  • Foster J, Raverdy S, Ganatra M, Colussi P, Taron C, Carlow C (2009) The wolbachia endosymbiont of brugia malayi has an active phosphoglycerate mutase: A candidate target for anti-filarial therapies. Parasitol Res

    Google Scholar 

  • Fukatsu T, Tsuchida T, Nikoh N, Koga R (2001) Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (insecta : Homoptera). Appl Environ Microbiol 67: 1284–1291

    CAS  PubMed  Google Scholar 

  • Geiger A, Ravel S, Mateille T, Janelle J, Patrel D, Cuny G, Frutos R (2007) Vector competence of Glossina palpalis gambiensis for Trypanosoma brucei s.l. and genetic diversity of the symbiont Sodalis glossinidius. Mol Biol Evol 24: 102–109

    CAS  PubMed  Google Scholar 

  • Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, Brenner DJ (1991) Arsenophonus-nasoniae gen-nov, sp-nov, the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int J Syst Bacteriol 41: 563–565

    Google Scholar 

  • Goebel W, Gross R (2001) Intracellular survival strategies of mutualistic and parasitic prokaryotes. Trends Microbiol 9: 267–273

    CAS  PubMed  Google Scholar 

  • Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98: 13–20

    CAS  PubMed  Google Scholar 

  • Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54: 641–679

    CAS  PubMed  Google Scholar 

  • Haynes S, Darby AC, Daniell TJ, Webster G, van Veen FJF, Godfray HCJ, Prosser JI, Douglas AE (2003) Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol 69: 7216–7223

    CAS  PubMed  Google Scholar 

  • Hentschel U, Steinert M, Hacker J (2000) Common molecular mechanisms of symbiosis and pathogenesis. Trends Microbiol 8: 226–231

    CAS  PubMed  Google Scholar 

  • Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: Exploring the paths between conflict and cooperation. Trends Ecol Evol 14: 49–53

    PubMed  Google Scholar 

  • Hogenhout SA, vanderWilk F, Verbeek M, Goldbach RW, vandenHeuvel J (1998) Potato leafroll virus binds to the equatorial domain of the aphid endosymbiotic groel homolog. J Virol 72: 358–365

    CAS  PubMed  Google Scholar 

  • Hunter MS, Perlman SJ, Kelly SE (2003) A bacterial symbiont in the bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc Lond Ser B-Biol Sci 270: 2185–2190

    Google Scholar 

  • Hurst GDD, Jiggins FM (2000) Male-killing bacteria in insects: Mechanisms, incidence, and implications. Emerg Infect Dis 6: 329–336

    CAS  PubMed  Google Scholar 

  • Hurst GDD, Jiggins FM, von der Schulenburg JHG, Bertrand D, West SA, Goriacheva, II, Zakharov IA, Werren JH, Stouthamer R, Majerus MEN (1999a) Male-killing Wolbachia in two species of insect. Proc R Soc Lond Ser B-Biol Sci 266: 735–740

    Google Scholar 

  • Hurst GDD, Johnson AP, von der Schulenburg JHG, Fuyama Y (2000) Male-killing Wolbachia in Drosophila: A temperature-sensitive trait with a threshold bacterial density. Genetics 156: 699–709

    CAS  PubMed  Google Scholar 

  • Hurst GDD, von der Schulenburg JHG, Majerus TMO, Bertrand D, Zakharov IA, Baungaard J, Volkl W, Stouthamer R, Majerus MEN (1999b) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8: 133–139

    CAS  PubMed  Google Scholar 

  • Hypsa V, Aksoy S (1997) Phylogenetic characterization of two transovarially transmitted endosymbionts of the bedbug Cimex lectularius (heteroptera: Cimicidae). Insect Mol Biol 6: 301–304

    CAS  PubMed  Google Scholar 

  • Hypsa V, Dale C (1997) In vitro culture and phylogenetic analysis of “Candidatus Arsenophonus triatominarum,” an intracellular bacterium from the triatomine bug, triatoma infestans. Int J Syst Bacteriol 47: 1140–1144

    CAS  PubMed  Google Scholar 

  • Hypsa V, Krizek J (2007) Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera: Anoplura). Microb Ecol 54: 242–251

    CAS  PubMed  Google Scholar 

  • Ikeda-Ohtsubo W, Desai M, Stinglt U, Brune A (2007) Phylogenetic diversity of ‘endomicrobia’ and their specific affiliation with termite gut flagellates. Microbiology-SGM 153: 3458–3465

    CAS  Google Scholar 

  • Jiggins FM, Hurst GDD, Jiggins CD, Von der Schulenburg JHG, Majerus MEN (2000) The butterfly Danaus chrysippus is infected by a male-killing spiroplasma bacterium. Parasitology 120: 439–446

    PubMed  Google Scholar 

  • Kampfer P, Lindh JM, Terenius O, Haghdoost S, Falsen E, Busse HJ, Faye I (2006) Thorsellia anophelis gen nov, sp. nov, a new member of the gammaproteobacteria. Int J Syst Evol Microbiol 56: 335–338

    Google Scholar 

  • Lefevre C, Charles H, Vallier A, Delobel B, Farrell B, Heddi A (2004) Endosymbiont phylogenesis in the Dryophthoridae weevils: Evidence for bacterial replacement. Mol Biol Evol 21: 965–973

    CAS  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25: 697–743

    CAS  PubMed  Google Scholar 

  • Mattila JT, Burkhardt NY, Hutcheson HJ, Munderloh UG, Kurtti TJ (2007) Isolation of cell lines and a rickettsial endosymbiont from the soft tick carios capensis (Acari: Argasidae: Ornithodorinae). J Med Entomol 44: 1091–1101

    CAS  PubMed  Google Scholar 

  • McGraw EA, Merritt DJ, Droller JN, O’Neill SL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc National Acad Sci U S A 99: 2918–2923

    CAS  Google Scholar 

  • McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang Y-F, O’Neill SL (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141–144

    CAS  PubMed  Google Scholar 

  • Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H (2005) The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes. Proc National Acad Sci U S A 102: 16919–16926

    CAS  Google Scholar 

  • Moran NA, Dunbar HE (2006) Sexual acquisition of beneficial symbionts in aphids. Proc National Acad Sci U S A 103: 12803–12806

    CAS  Google Scholar 

  • Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is callibrated using the insect hosts. Proc R Soc Lond Ser B 253: 167–171

    Google Scholar 

  • Moran NA, Telang A (1998) Bacteriocyte-associated symbionts of insects – a variety of insect groups harbor ancient prokaryotic endosymbionts. Bioscience 48: 295–304

    Google Scholar 

  • Moret Y, Juchault P, Rigaud T (2001) Wolbachia endosymbiont responsible for cytoplasmic incompatibility in a terrestrial crustacean: Effects in natural and foreign hosts Heredity, 86(3): 325–332

    Google Scholar 

  • Morin S, Ghanim M, Zeidan M, Czosnek H, Verbeek M, van den Heuvel J (1999) A groel homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology 256: 75–84

    CAS  PubMed  Google Scholar 

  • Muller CB, Williams IS, Hardie J (2001) The role of nutrition, crowding and interspecific interactions in the development of winged aphids. Ecol Entomol 26: 330–340

    Google Scholar 

  • Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell BC (1991a) Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of 4 aphid families. J Bacteriol 173: 6321–6324

    CAS  PubMed  Google Scholar 

  • Munson MA, Baumann P, Kinsey MG (1991b) Buchnera gen. Nov and Buchnera aphidicola sp. Nov, a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int J Syst Bacteriol 41: 566–568

    Google Scholar 

  • Nicholson GM (2007) Fighting the global pest problem: Preface to the special toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 49: 413–422

    CAS  PubMed  Google Scholar 

  • Noda H, Koizumi Y (2003) Sterol biosynthesis by symbiotes: Cytochrome p450 sterol c-22 desaturase genes from yeastlike symbiotes of rice planthoppers and anobiid beetles. Insect Biochem Mol Biol 33: 649–658

    CAS  PubMed  Google Scholar 

  • Notomista E, Lahm A, Di Donato A, Tramontano A (2003) Evolution of bacterial and archaeal multicomponent monooxygenases. J Mol Evol 56: 435–445

    CAS  PubMed  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc National Acad Sci U S A 102: 12795–1280

    CAS  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2006) Costs and benefits of a superinfection of facultative symbionts in aphids. Proc R Soc Lond Ser B-Biol Sci 273: 1273–1280

    Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc National Acad Sci U S A 100: 1803–1807

    CAS  Google Scholar 

  • Pearlman E, Gillette-Ferguson I (2007) Onchocerca volvulus, Wolbachia and river blindness. Chem Immunol Allergy 92: 254–265

    CAS  PubMed  Google Scholar 

  • Perotti MA, Clarke HK, Turner BD, Braig HR (2006) Rickettsia as obligate and mycetomic bacteria. FASEB J 20: 2372–2374

    CAS  PubMed  Google Scholar 

  • Poinsot D, Bourtzis K, Markakis G, Savakis C, Mercot H (1998) Wolbachia transfer from Drosophila melanogaster into d-simulans: Host effect and cytoplasmic incompatibility relationships. Genetics 150: 227–237

    CAS  PubMed  Google Scholar 

  • Poinsot D, Charlat S, Mercot H (2003) On the mechanism of Wolbachia-induced cytoplasmic incompatibility: Confronting the models with the facts. Bioessays 25: 259–265

    PubMed  Google Scholar 

  • Reynolds KT, Hoffmann AA (2002) Male age, host effects and the weak expression or nonexpression of cytoplasmic incompatibility in drosophila strains infected by maternally transmitted Wolbachia. Genet Res 80: 79–87

    PubMed  Google Scholar 

  • Robinson A (2005) Genetic basis of the sterile insect technique. Sterile Insect Tech 95–114

    Google Scholar 

  • Ruby EG (2008) Symbiotic conversations are revealed under genetic interrogation. Nature Reviews Microbiology 6: 752–762

    CAS  PubMed  Google Scholar 

  • Sandstrom JP, Russell JA, White JP, Moran NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10: 217–228

    CAS  PubMed  Google Scholar 

  • Sauer C, Stackebrandt E, Gadau J, Holldobler B, Gross R (2000) Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: Proposal of the new taxon Candidatus blochmannia gen. Nov. Int J Syst Evol Microbiol 50: 1877–1886

    CAS  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310: 1781–1781

    CAS  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62: 775–806

    CAS  PubMed  Google Scholar 

  • Scott L, O’Neil, Ary A. Hoffmann, John H. Werren (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press

    Google Scholar 

  • Sinkins SP (2004) Wolbachia and cytoplasmic incompatibility in mosquitoes. Insect Biochem Mol Biol 34: 723–729

    CAS  PubMed  Google Scholar 

  • Sinkins SP, Gould F (2006) Gene drive systems for insect disease vectors. Nat Rev Genet 7: 427–435

    CAS  PubMed  Google Scholar 

  • Stouthamer R, Kazmer DJ (1994) Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73: 317–327

    Google Scholar 

  • Suh SO, Noda H, Blackwell M (2001) Insect symbiosis: Derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol Biol Evol 18: 995–1000

    CAS  PubMed  Google Scholar 

  • Summers WC (2001) Bacteriophage therapy. Annu Rev Microbiol 55: 437–451

    CAS  PubMed  Google Scholar 

  • Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SGE (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296: 2376–2379

    CAS  PubMed  Google Scholar 

  • Tamas I, Klasson LM, Sandstrom JP, Andersson SGE (2001) Mutualists and parasites: How to paint yourself into a (metabolic) corner. FEBS Lett 498: 135–139

    CAS  PubMed  Google Scholar 

  • Taylor MJ, Bandi C, Hoerauf A (2005) Wolbachia bacterial endosymbionts of filarial nematodes. Advances in parasitology, vol 60. San Diego, Elsevier Academic Press. 245–284

    Google Scholar 

  • Thao ML, Baumann P (2004) Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol 70: 3401–3406

    CAS  PubMed  Google Scholar 

  • Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P (2000) Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol 66: 2898–2905

    CAS  PubMed  Google Scholar 

  • Toh H, Weiss BL, Perkin SAH, Yamashita A, Oshima K, Hattori M, Aksoy S (2006) Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of sodalis glossinidius in the tsetse host. Genome Res 16: 149–156

    CAS  PubMed  Google Scholar 

  • Townson H (2002) Wolbachia as a potential tool for suppressing filarial transmission. Ann Trop Med Parasit 96: 117–127

    Google Scholar 

  • Turelli M, Hoffmann AA (1999) Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations Insect Molecular Biology, 8(2): 243–255

    Google Scholar 

  • Tram U, Sullivan W (2002) Rote of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science 296: 1124–1126

    CAS  PubMed  Google Scholar 

  • Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292: 2479–2482

    CAS  PubMed  Google Scholar 

  • Welburn SC, Maudlin I (1999) Tsetse-typanosome interactions: Rites of passage. Parasitol Today 15: 399–403

    CAS  PubMed  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42: 587–609

    CAS  PubMed  Google Scholar 

  • Werren JH, Hurst GDD, Zhang W, Breeuwer JAJ, Stouthamer R, Majerus MEN (1994) Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 176: 388–394

    CAS  PubMed  Google Scholar 

  • Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4: 1079–1092

    CAS  Google Scholar 

  • Yen JH, Barr AR (1971) New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens l. Nature 232: 657–658

    CAS  PubMed  Google Scholar 

  • Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Nat Acad Sci U S A 101: 15042–15045

    CAS  Google Scholar 

  • Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, Hunter MS (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc Nat Acad Sci U S A 98: 12555–12560

    CAS  PubMed  Google Scholar 

  • Zhao R, Han R, Qiu X, Yan X, Cho L, Liu X (2008) Cloning and heterdogous expression of infecticidal-protein-encoding genes from Photorhabdus luminescens tt01 in enterobacter Cloucae for termite control. Appl Environ Microbiol 74: 7219–7726

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Angela E. Douglas, Cornel University, Ithaca, USA for valuable discussions of the subject area and Dr. Rod Dillon, Liverpool School of Tropical Medicine, Liverpool UK for helpful and constructive editorial comments and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair C. Darby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Darby, A.C. (2009). Symbiosis Research as a Novel Strategy for Insect Pest Control. In: Ishaaya, I., Horowitz, A. (eds) Biorational Control of Arthropod Pests. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2316-2_9

Download citation

Publish with us

Policies and ethics