Skip to main content

γ-Aminobutyric Acid Receptors: A Rationale for Developing Selective Insect Pest Control Chemicals

  • Chapter
  • First Online:
Biorational Control of Arthropod Pests

Abstract

It has long been known that γ-aminobutyric acid (GABA) participates in a bypass of the tricarboxylic acid (TCA) cycle in plants and bacteria. In a single1950 issue of the Journal of Biological Chemistry, Awapara et al., Roberts and Frankel, and Udenfriend independently reported the presence of a large quantity – approximately 1 mg/g tissue – of GABA in vertebrate brains; later similarly high contents were found in the inhibitory neurons of the Atlantic lobster (Kravitz et al. 1963; Otsuka et al. 1967).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelsberger H, Lepier A, Dudel J (2000) Activation of rat recombinant α1β2γ2S GABAA receptor by the insecticide ivermectin. Eur J Pharmacol 394: 163–170

    Article  CAS  PubMed  Google Scholar 

  • Ahn YJ, Kwon M, Park HM, Han CK (1997) Potent insecticidal activity of Ginkgo biloba derived trilactone terpenes against Nilaparvata lugens. In: Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (eds) Phytochemicals for pest control. ACS Symposium Series 658. American Chemical Society, Washington, DC, pp. 90–105

    Chapter  Google Scholar 

  • Akamatsu M, Ozoe Y, Ueno T, Fujita T, Mochida K, Nakamura T, Matsumura F (1997) Sites of action of noncompetitive GABA antagonists in houseflies and rats: three-dimensional QSAR analysis. Pestic Sci 49: 319–332

    Article  CAS  Google Scholar 

  • Akinci MK, Schofield PR (1999) Widespread expression of GABAA receptor subunits in peripheral tissues. Neurosci Res 35: 145–153

    Article  CAS  PubMed  Google Scholar 

  • Alam MS, Kajiki R, Hanatani H, Kong X, Ozoe F, Matsui Y, Matsumura F, Ozoe Y (2006) Synthesis and structure-activity relationships of 1-phenyl-1H-1,2,3-triazoles as selective insect GABA receptor antagonists. J Agric Food Chem 54: 1361–1372

    Article  CAS  PubMed  Google Scholar 

  • Alam MS, Huang J, Ozoe F, Matsumura F, Ozoe Y (2007) Synthesis, 3D-QSAR, and docking studies of 1-phenyl-1H-1,2,3-triazoles as selective antagonists for β3 over α1β2γ2 GABA receptors. Bioorg Med Chem 15: 5090–5104

    Article  CAS  PubMed  Google Scholar 

  • Aronstein K, Auld V, ffrench-Constant R (1996) Distribution of two GABA receptor-like subunits in the Drosophila CNS. Invert Neurosci 2: 115–120

    Article  CAS  PubMed  Google Scholar 

  • Aspinwall LS, Bermudez I, King LA, Wafford KA (1997) The interactions of hexachlorocyclohexane isomers with human γ-aminobutyric acidA receptors expressed in Xenopus oocytes. J Pharmaco Exp Ther 282: 1557–1564

    CAS  Google Scholar 

  • Awapara J, Landua AJ, Fuerst R, Seale B (1950) Free γ-aminobutyric acid in brain. J Biol Chem 187: 35–39

    CAS  PubMed  Google Scholar 

  • Aydar E, Beadle DJ (1999) The pharmacological profile of GABA receptors on cultured insect neurones. J Insect Physiol 45: 213–219

    Article  CAS  PubMed  Google Scholar 

  • Bai D, Sattelle DB (1995) A GABAB receptor on an identified insect motor neurone. J Exp Biol 198: 889–894

    CAS  PubMed  Google Scholar 

  • Barnard EA, Skolnick P, Olsen RW, Möhler H, Sieghart W, Biggio G, Braestrup C, Bateson AN, Langer SZ (1998) International Union of Pharmacology. XV. Subtypes of γ-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50: 291–313

    CAS  PubMed  Google Scholar 

  • Bazemore AW, Elliott KAC, Florey E (1957) Isolation of factor I. J Neurochem 1: 334–339

    Article  CAS  Google Scholar 

  • Beg AA, Jorgensen EM (2003) EXP-1 is an excitatory GABA-gated cation channel. Nat Neurosci 6: 1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Benson JA (1989) A novel GABA receptor in the heart of a primitive arthropod, Lumulus polyphemus. J Exp Biol 147: 421–438

    CAS  Google Scholar 

  • Bermudez I, Hawkins CA, Taylor AM, Beadle DJ (1991) Actions of insecticides on the insect GABA receptor complex. J Recept Res 11: 221–232

    CAS  PubMed  Google Scholar 

  • Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABAB receptors. Physiol Rev 84: 835–867

    Article  CAS  PubMed  Google Scholar 

  • Blechschmidt K, Eckert M, Penzlin H (1990) Distribution of GABA-like immunoreactivity in the central nervous system of the cockroach Periplaneta americana (L.). J Chem Neuroanat 3: 323–336

    CAS  PubMed  Google Scholar 

  • Bloomquist JR, Boina DR, Chow E, Carlier PR, Reina M, Gonzalez-Coloma A (2008) Mode of action of the plant-derived silphinenes on insect and mammalian GABAA receptor/chloride channel complex. Pestic Biochem Physiol 91: 17–23

    Article  CAS  Google Scholar 

  • Bonanno G, Fassio A, Sala R, Schmid G, Raiteri M (1998) GABAB receptors as potential targets for drugs able to prevent excessive excitatory amino acid transmission in the spinal cord. Eur J Pharmacol 362: 143–148

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Collins JF, Hill RG (1976) Bicyclic phosphorus esters that are potent convulsants and GABA antagonists. Nature 261: 601–603

    Article  CAS  PubMed  Google Scholar 

  • Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International union of pharmacology. XXXIII. Mammalian γ-aminobutyric acidB receptors: structure and function. Pharmacol Rev 54: 247–264

    Article  CAS  PubMed  Google Scholar 

  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411: 269–276

    Article  CAS  PubMed  Google Scholar 

  • Brotz TM, Borst A (1996) Cholinergic and GABAergic receptors on fly tangential cells and their role in visual motion detection. J Neurophysiol 76: 1786–1799s

    CAS  PubMed  Google Scholar 

  • Brotz TM, Bochenek B, Aronstein K, ffrench-Constant RH, Borst A (1997) γ-Aminobutyric acid receptor distribution in the mushroom bodies of a fly (Calliphora erythrocephala): a functional subdivision of Kenyon cells? J Comp Neurol 383: 42–48

    Article  CAS  PubMed  Google Scholar 

  • Buckingham SD, Sattelle DB (2004) GABA receptors of insects. In: Iatrou K, Gill SS, Gilbert LI (eds) Comprehensive molecular insect science. Elsevier Pergamon, Amsterdam, The Netherlands, pp. 107–142

    Google Scholar 

  • Buckingham SD, Matsuda K, Hosie AM, Baylis HA, Squire MD, Lansdell SJ, Millar NS, Sattelle DB (1996) Wild-type and insecticide-resistant homo-oligomeric GABA receptors of Drosophila melanogaster stably expressed in a Drosophila cell line. Neuropharmacology 35: 1393–1401

    Article  CAS  PubMed  Google Scholar 

  • Buckingham SD, Biggin PC, Sattelle BM, Brown LA, Sattelle DB (2005) Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. 68: 942–951

    Google Scholar 

  • Callaway JC, Stuart AE, Edwards JS (1989) Immunocytochemical evidence for the presence of histamine and GABA in photoreceptors of the barnacle (Balanus nubilus). Vis Neurosci 3: 289–299

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Durkin KA, Casida JE (2006) Structural model for γ-aminobutyric acid receptor noncompetitive antagonist binding: widely diverse structures fit the same site. Proc Natl Acad Sci USA 103: 5185–5190

    Article  CAS  PubMed  Google Scholar 

  • Ci S, Ren T, Su Z (2007) Modeling the interaction of fipronil-related non-competitive antagonists with the GABA β3-receptor. J Mol Model 13: 457–464

    Article  CAS  PubMed  Google Scholar 

  • Cole LM, Casida JE (1992) GABA-gated chloride channel: binding site for 4′-ethynyl-4-n-[2,3–3H2]propylbicycloorthobenzoate ([3H]EBOB) in vertebrate brain and insect head. Pestic Biochem Physiol 44: 1–8

    Article  CAS  Google Scholar 

  • Cole LM, Nicholson RA, Casida JE (1993) Action of phenylpyrazole insecticides at the GABA-gated chloride channel. Pestic Biochem Physiol 46: 47–54

    Article  CAS  Google Scholar 

  • Colliot F, Kukorowski KA, Hawkins DW, Roberts DA (1992) Fipronil: a new soil and foliar broad spectrum insecticide. Brighton Crop Prot Conf – Pests Dis 2–1: 29–34

    Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110: 5959–5967

    CAS  Google Scholar 

  • Cull-Candy SG (1976) Two types of extrajunctional l-glutamate receptors in locust muscle fibres. J Physiol 255: 449–464

    CAS  PubMed  Google Scholar 

  • Cully DF, Vassilatis DK, Liu KK, Paress PS, Van der Ploeg LHT, Schaeffer JM, Arena JP (1994) Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature 371: 707–711

    Article  CAS  PubMed  Google Scholar 

  • Cully DF, Paress PS, Liu KK, Schaeffer JM, Arena JP (1996) Identification of a Drosophila melanogaster glutamate-gated chloride channel sensitive to the antiparsitic agent avermectin. J Biol Chem 271: 20187–20191

    Article  CAS  PubMed  Google Scholar 

  • Dawson GR, Wafford KA, Smith A, Marshall GR, Bayley PJ, Schaeffer JM, Meinke PT, McKernan RM (2000) Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the γ-aminobutyric acidA receptor. J Pharmacol Exp Ther 295: 1051–1060

    CAS  PubMed  Google Scholar 

  • Delany NS, Laughton DL, Wolstenholme AJ (1998) Cloning and localisation of an avermectin receptor-related subunit from Haemonchus contortus. Mol Biochem Parasitol 97: 177–187

    Article  CAS  PubMed  Google Scholar 

  • Dent JA, Davis MW, Avery L (1997) avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO J 16: 5867–5879

    Article  CAS  PubMed  Google Scholar 

  • Duce IR, Scott RH (1985) Actions of dihydroavermectin B1a on insect muscle. Br J Pharmacol 85: 395–401

    CAS  PubMed  Google Scholar 

  • Duittoz AH, Martin RJ (1991) Antagonist properties of arylaminopyridazine GABA derivatives at the Ascaris muscle GABA receptor. J Exp Biol 159: 149–164

    CAS  PubMed  Google Scholar 

  • Eguchi Y, Ihara M, Ochi E, Shibata Y, Matsuda K, Fushiki S, Sugama H, Hamasaki Y, Niwa H, Wada M, Ozoe F, Ozoe Y (2006) Functional characterization of Musca glutamate- and GABA-gated chloride channels expressed independently and coexpressed in Xenopus oocytes. Insect Mol Biol 15: 773–783

    Article  CAS  PubMed  Google Scholar 

  • Enell L, Hamasaka Y, Kolodziejczyk A, Nässel DR (2007) γ-Aminobutyric acid (GABA) signaling components in Drosophila: immunocytochemical localization of GABAB receptors in relation to the GABAA receptor subunit RDL and a vesicular GABA transporter. J Comp Neurol 505: 18–31

    Article  CAS  PubMed  Google Scholar 

  • Enna SJ (2007) The GABA receptors. In: Enna SJ, Möhler H (eds) The GABA receptors. Third Edition. Humana Press, Totowa, NJ, pp. 1–21

    Google Scholar 

  • Es-Salah Z, Lapied B, Le Goff G, Hamon A (2008) RNA editing regulates insect γ-aminobutyric acid receptor function and insecticide sensitivity. NeuroReport 19: 939–943

    Article  CAS  PubMed  Google Scholar 

  • Eto M (1983) Development of insecticidal cyclic phosphoryl compounds through chemical and biochemical approaches. J Environ Sci Health B 18: 119–145

    Article  CAS  PubMed  Google Scholar 

  • Eto M, Ozoe Y, Fujita T, Casida JE (1976) Significance of branched bridge-head substituent in toxicity of bicyclic phosphate esters. Agric Biol Chem 40: 2113–2115

    CAS  Google Scholar 

  • Feng X-P, Hayashi J, Beech RN, Prichard RK (2002) Study of the nematode putative GABA type-A receptor subunits: evidence for modulation by ivermectin. J Neurochem 83: 870–878

    Article  CAS  PubMed  Google Scholar 

  • ffrench-Constant RH, Roush RT (1991) Gene mapping and cross-resistance in cyclodiene insecticide-resistant Drosophila melanogaster (Mg.). Genet Res Camb 57: 17–21

    Article  CAS  Google Scholar 

  • ffrench-Constant RH, Rocheleau TA (1993) Drosophila γ-aminobutyric acid receptor gene Rdl shows extensive alternative splicing. J Neurochem 60: 2323–2326

    Article  CAS  PubMed  Google Scholar 

  • ffrench-Constant RH, Roush RT, Mortlock D, Dively GP (1990) Isolation of dieldrin resistance from field polulations of Drosophila melanogaster (Diptera: Drosophilidae). J Econ Entomol 83: 1733–1737

    CAS  PubMed  Google Scholar 

  • ffrench-Constant RH, Mortlock DP, Shaffer CD, MacIntyre RJ, Roush RT (1991) Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate γ-aminobutyric acid subtype A receptor locus. Proc Natl Acad Sci USA 88: 7209–7213

    Article  CAS  PubMed  Google Scholar 

  • ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE (1993) A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363: 449–451

    Article  CAS  PubMed  Google Scholar 

  • Florey E (1954) An inhibitory and an excitatory factor of mammalian central nervous system, and their action of a single sensory neuron. Arch Int Physiol 62: 33–53

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga A, Hasegawa H, Ogawa C, Matsuno A, Imamura K, Ozoe Y (1999) Insecticidal properties of 3-aminopropyl(methyl)phosphinic acid and its effect on K+-evoked release of acetylcholine from cockroach synaptosomes. Comp Biochem Physiol 122C: 283–286

    CAS  Google Scholar 

  • Ganeshina O, Menzel R (2001) GABA-immunoreactive neurons in the mushroom bodies of the honeybee: an electron microscopic study. J Comp Neurol 437: 335–349

    Article  CAS  PubMed  Google Scholar 

  • Gisselmann G, Plonka J, Pusch H, Hatt H (2004) Drosophila melanogaster GRD and LCCH3 subunits form heteromultimeric GABA-gated cation channels. Br J Pharmacol 124: 409–413

    Article  CAS  Google Scholar 

  • Grolleau F, Sattelle DB (2000) Single channel analysis of the blocking actions of BIDN and fipronil on a Drosophila melanogaster GABA receptor (RDL) stably expressed in a Drosophila cell line. Br J Phamacol 130: 1833–1842

    Article  CAS  Google Scholar 

  • Gurley D, Amin J, Ross PC, Weiss DS, White G (1995) Point mutations in the M2 region of α, β, or γ subunit of the GABAA channel that abolish block by picrotoxin. Recept Channels 3: 13–20

    CAS  PubMed  Google Scholar 

  • Hamano H, Nagata K, Fukuda N, Shimotahira H, Ju X-L, Ozoe Y (2000) 5-[4-(3,3-Dimethylbutoxycarbonyl)phenyl]-4-pentynoic acid and its derivatives inhibit ionotropic γ-aminobutyric acid receptors by binding to the 4′-ethynyl-4-n-propylbicycloorthobenzoate site. Bioorg Med Chem 8: 665–674

    Article  CAS  PubMed  Google Scholar 

  • Harrison JB, Chen HH, Sattelle E, Barker PJ, Huskisson NS, Rauh JJ, Bai D, Sattelle DB (1996) Immunocytochemical mapping of a C-terminus anti-peptide antibody to the GABA receptor subunit, RDL in the nervous system of βDrosophila melanogaster. Cell Tissue Res 284: 269–278

    Article  CAS  PubMed  Google Scholar 

  • Harvey RJ, Schmitt B, Hermans-Borgmeyer I, Gundelfinger ED, Betz H, Darlison MG (1994) Sequence of a Drosophila ligand-gated ion-channel polypeptide with an unusual amino-terminal extracellular domain. J Neurochem 62: 2480–2483

    Article  CAS  PubMed  Google Scholar 

  • Henderson JE, Soderlund DM, Knipple DC (1993) Characterization of a putative γ-aminobutyric acid (GABA) receptor β subunit gene from Drosophila melanogaster. Biochem Biophys Res Commun 193: 474–482

    Article  CAS  PubMed  Google Scholar 

  • Henderson JE, Knipple DC, Soderlund DM (1994) PCR-based homology probing reveals a family of GABA receptor-like genes in Drosophila melanogaster. Insect Biochem Mol Biol 24: 363–371

    Article  CAS  PubMed  Google Scholar 

  • Hevers W, Lüddens H (1998) The diversity of GABAA receptors. Mol Neurobiol 18: 35–86GABA in Nervous System Function

    Article  CAS  PubMed  Google Scholar 

  • Hirata K, Ishida C, Eguchi Y, Sakai K, Ozoe F, Ozoe Y, Matsuda K (2008) Role of a serine residue (S278) in the pore-facing region of the housefly l-glutamate-gated chloride channel in determining selectivity to noncompetitive antagonists. Insect Mol Biol 17: 341–350Galanthus nivalis

    Article  CAS  PubMed  Google Scholar 

  • Hisano K, Ozoe F, Huang J, Kong X, Ozoe Y (2007) The channel-lining 6′ amino acid in the second membrane-spanning region of ionotropic GABA receptors has more profound effects on 4′-ethynyl-4-n-propylbicycloorthobenzoate binding than the 2′ amino acid. Invert Neurosci 7: 39–46

    Article  CAS  PubMed  Google Scholar 

  • Höld KM, Sirisoma NS, Ikeda T, Narahashi T, Casida JE (2000) α-Thujone (the active component of absinthe): γ-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc Natl Acad Sci USA 97: 3826–3831

    Article  PubMed  Google Scholar 

  • Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta. Cell Tissue Res 248: 1–24

    Article  CAS  PubMed  Google Scholar 

  • Homberg U, Bleick A, Rathmayer W (1993) Immunocytochemistry of GABA and glutamic acid decarboxylase in the thoracic ganglion of the crab Eriphia spinifrons. Cell Tissue Res 271: 279–288

    Article  Google Scholar 

  • Horoszok L, Raymond V, Sattelle DB, Wolstenholme AJ (2001) GLC-3: a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans. Br J Pharmacol 132: 1247–1254

    Article  CAS  PubMed  Google Scholar 

  • Hosie AM, Sattelle DB (1996a) Allosteric modulation of an expressed homo-oligomeric GABA-gated chloride channel of Drosophila melanogaster. Br J Pharmacol 117: 1229–1237

    CAS  PubMed  Google Scholar 

  • Hosie AM, Sattelle DB (1996b) Agonist pharmacology of two Drosophila GABA receptor splice variants. Br J Pharmacol 119: 1577–1585

    CAS  PubMed  Google Scholar 

  • Hosie AM, Ozoe Y, Koike K, Ohmoto T, Nikaido T, Sattelle DB (1996) Actions of picrodendrin antagonists on dieldrin-sensitive and -resistant Drosophila GABA receptors. Br J Pharmacol 119: 1569–1576

    CAS  PubMed  Google Scholar 

  • Hosie AM, Aronstein K, Sattelle DB, ffrench-Constant RH (1997) Molecular biology of insect neuronal GABA receptors. Trends Neurosci 20: 578–583

    Article  CAS  PubMed  Google Scholar 

  • Hosie AM, Buckingham SD, Presnail JK, Sattelle DB (2001) Alternative splicing of a Drosophila GABA receptor subunit gene identifies determinants of agonist potency. Neuroscience 102: 709–714

    Article  CAS  PubMed  Google Scholar 

  • Hosie AM, Buckingham SD, Hamon A, Sattelle DB (2006) Replacement of asparagine with arginine at the extracellular end of the second transmembrane (M2) region of insect GABA receptors increases sensitivity to penicillin G. Invert Neurosci 6: 75–79

    Article  CAS  PubMed  Google Scholar 

  • Huang SH, Duke RK, Chebib M, Sasaki K, Wada K, Johnston GAR (2003) Bilobalide, a sesquiterpene trilactone from Ginkgo biloba, is an antagonist at recombinant α1β2γ2L GABAA receptors. Eur J Pharmacol 464: 1–8

    Article  CAS  PubMed  Google Scholar 

  • Huang SH, Duke RK, Chebib M, Sakaki K, Wada K, Johnston GAR (2004) Ginkgolides, diterpene trilactones of Ginkgo biloba, as antagonists at recombinant α1β2γ2L GABAA receptors. Eur J Pharmacol 494: 131–138

    Article  CAS  PubMed  Google Scholar 

  • Ihara M, Ishida C, Okuda H, Ozoe Y, Matsuda K (2005) Differential blocking action of 4′-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) and γ-hexachlorocyclohexane (γ-HCH) on γ-aminobutyric acid- and glutamate-gated responses of American cockroach neurons. Invert Neurosci 5: 157–164

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Ozoe Y, Okuyama E, Nagata K, Honda H, Shono T, Narahashi T (1999) Anisatin modulation of the γ-aminobutyric acid receptor-channel in rat dorsal root ganglion neurons. Br J Pharmacol 127: 1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Akaike N (1988) Blockade of γ-aminobutyric acid-gated chloride current in frog sensory neurons by picrotoxin. Neurosci Res 5: 380–394

    Article  CAS  PubMed  Google Scholar 

  • Ivic L, Sands TTJ, Fishkin N, Nakanishi K, Kriegstein AR, Strømggaard K (2003) Terpene trilactones from Ginkgo biloba are antagonists of cortical glycine and GABAA receptors. J Biol Chem 278: 49279–49285

    Article  CAS  PubMed  Google Scholar 

  • Jackel C, Krenz W-D, Nagy F (1994) Bicucullin/baclofen-insensitive GABA response in crustacean neurones in culture. J Exp Biol 191: 167–193

    CAS  PubMed  Google Scholar 

  • Jarboe CH, Porter LA (1965) The preparative column chromatographic separation of picrotoxin. J Chromatog 19: 427–428

    CAS  Google Scholar 

  • Jarboe CH, Porter LA, Buckler RT (1968) Structural aspects of picrotoxinin action. J Med Chem 11: 729–731

    Article  CAS  PubMed  Google Scholar 

  • Ju X-L, Ozoe Y (1999) Bicyclophosphorothionate antagonists exhibiting selectivity for housefly GABA receptors. Pestic Sci 55: 971–982

    Article  CAS  Google Scholar 

  • Ju X-L, Ozoe Y (2000) Noncompetitive antagonist-binding sites of rat and housefly γ-aminobutyric acid receptors display different enantioselectivities for tert-butyl(isopropyl)bicyclophosphorothionate. Bioorg Med Chem 8: 2337–2341

    Article  CAS  PubMed  Google Scholar 

  • Ju X-L, Hao Y-L, Pei J-F, Ozoe Y (2007) Investigation of structural requirements for inhibitory activity at the rat and housefly picrotoxinin binding sites in ionotropic GABA receptors using DISCOtech and CoMFA. Chemosphere 69: 864–871

    Article  CAS  PubMed  Google Scholar 

  • Judge S, Leitch B (1999) GABA immunoreactivity in processes presynaptic to the locust wing stretch receptor neuron. J Comp Neurol 407: 103–114

    Article  CAS  PubMed  Google Scholar 

  • Jursky F, Fuchs K, Buhr A, Tretter V, Sigel E, Sieghart W (2000) Identification of amino acid residues of GABAA receptor subunits contributing to the formation and affinity of the tert-butylbicyclophosphorothionate binding site. J Neurochem 74: 1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386: 239–246

    Article  CAS  PubMed  Google Scholar 

  • Khom S, Baburin I, Timin E, Hohaus A, Trauner G, Kopp B, Hering S (2007) Valerenic acid potentiates and inhibits GABAA receptors: molecular mechanism and subunit specificity. Neuropharmacology 53: 178–187

    Article  CAS  PubMed  Google Scholar 

  • Korenaga S, Ito Y, Ozoe Y, Eto M (1977) The effects of bicyclic phosphate esters on the invertebrate and vertebrate neuro-muscular junctions. Comp Biochem Physiol 57C: 95–100

    Google Scholar 

  • Kravitz EA, Kuffler SW, Potter DD (1963) Gamma-aminobutyric acid and other blocking compounds in Crustacea. III. Their relative concentrations in separated motor and inhibitory axons. J Neurophysiol 26: 739–751

    CAS  PubMed  Google Scholar 

  • Kuriyama T, Schmidt TJ, Okuyama E, Ozoe Y (2002) Structure-activity relationships of seco-prezizaane terpenoids in γ-aminobutyric acid receptors of houseflies and rats. Bioorg Med Chem 10: 1873–1081

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama T, Kakemoto E, Takahashi N, Imamura K, Oyama K, Suzuki E, Harimaya K, Yaguchi T, Ozoe Y (2004) Receptor assay-guided isolation of anti-GABAergic insecticidal alkaloids from a fungal culture. J Agric Food Chem 52: 3884–3887

    Article  CAS  PubMed  Google Scholar 

  • Kuriyama T, Ju X-L, Fusazaki S, Hishinuma H, Satou T, Koike K, Nikaido T, Ozoe Y (2005) Nematocidal quassinoids and bicyclophosphorothionates: a possible common mode of action on the GABA receptor. Pestic Biochem Physiol 81: 176–187

    Article  CAS  Google Scholar 

  • Le Goff G, Hamon A, Bergé J-P, Amichot M (2005) Resistance to fipronil in Drosophila simulans: influence of two point mutations in the RDL GABA receptor subunit. J Neurochem 92: 1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Lee H-J, Rocheleau T, Zhang H-G, Jackson MB, ffrench-Constant RH (1993) Expression of a Drosophila GABA receptor in a baculovirus insect cell system. FEBS Lett 335: 315–318

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Su H, O’Dowd DK (2003) GABA receptors containing Rdl subunits mediate fast inhibitory synaptic trnsmission in Drosophila neurons. J Neurosci 23: 4625–4634

    CAS  PubMed  Google Scholar 

  • Ludmerer SW, Warren VA, Williams BS, Zheng Y, Hunt DC, Ayer MB, Wallace MA, Chaudhary AG, Egan MA, Meinke PT, Dean DC, Garcia ML, Cully DF, Smith MM (2002) Ivermectin and nodulisporic acid receptors in Drosophila melanogaster contain both γ-aminobutyric acid-gated Rdl and glutamate-gated GluClα chloride channel subunits. Biochemistry 41: 6548–6560

    Article  CAS  PubMed  Google Scholar 

  • Lummis SCR (1990) GABA receptors in insects. Comp Biochem Physiol 95C: 1–8

    CAS  Google Scholar 

  • Lyga JW, Ali SF, Kinne LP, Marek FL, Wusaty MA, Staetz CA, Willut J (2007) Discovery of 3-arylpyrimidin-2,4-diones as GABA-gated chloride channel insecticides: translation from target site to field. In: Lyga JW, Theodoridis G (eds) Synthesis and chemistry of agrochemicals VII. ACS Symposium Series 948. American Chemical Society, Washington, DC, pp 153–166

    Chapter  Google Scholar 

  • Martin RJ, Pennington AJ (1989) A patch-clamp study of effects of dihydroavermectin on Ascaris muscle. Br J Pharmacol 98: 747–756

    CAS  PubMed  Google Scholar 

  • Matsuda K, Hosie AM, Holyoke CW Jr, Rauh JJ, Sattelle DB (1999) Cross-resistance with dieldrin of a novel tricyclic dinitrile GABA receptor antagonist. Br J Pharmacol 127: 1305–1307

    Article  CAS  PubMed  Google Scholar 

  • Matsumura F, Ghiasuddin SM (1983) Evidence for similarities between cyclodiene type insecticides and picrotoxinin in their action mechanisms. J Environ Sci Health B 18: 1–14

    Article  CAS  PubMed  Google Scholar 

  • Mezler M, Müller T, Raming K (2001) Cloning and functional expression of GABAB receptors from Drosophila. Eur J Neurosci 13: 477–486

    Article  CAS  PubMed  Google Scholar 

  • Millar NS, Buckingham SD, Sattelle DB (1994) Stable expression of a functional homo-oligomeric Drosophila GABA receptor in a Drosophila cell line. Proc R Soc Lond B 258: 307–314

    Article  CAS  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423: 949–955

    Article  CAS  PubMed  Google Scholar 

  • Nagata K, Narahashi T (1994) Dual action of the cyclodiene insecticide dieldrin on the γ-aminobutyric acid receptor–chloride channel complex of rat dorsal root ganglion neurons. J Pharmacol Exp Ther 269: 164–171

    CAS  PubMed  Google Scholar 

  • Nagata K, Narahashi T (1995) Differential effects of hexachlorocyclohexane isomers on the GABA receptor–chloride channel complex in rat dorsal root ganglion neurons. Brain Res 704: 85–91

    Article  CAS  PubMed  Google Scholar 

  • Nagata K, Hamilton BJ, Carter DB, Narahashi (1994) Selective effects of dieldrin on the GABAA receptor-channel subunits expressed in human embryonic kidney cells. Brain Res 645: 19–26

    Article  CAS  PubMed  Google Scholar 

  • Nagata K, Huang C-S, Hamilton BJ, Carter DB, Narahashi T (1996) Differential effects of hexachlorocyclohexane isomers on the GABA receptor subunits expressed in human embryonic kidney cell line. Brain Res 738: 131–137

    Article  CAS  PubMed  Google Scholar 

  • Narusuye K, Nakao T, Abe R, Nagatomi Y, Hirase K, Ozoe Y (2007) Molecular cloning of a GABA receptor subunit from Laodelphax striatella (Fallén) and patch clamp analysis of the homo-oligomeric receptors expressed in a Drosophila cell line. Insect Mol Biol 16: 723–733

    Article  CAS  PubMed  Google Scholar 

  • Otsuka M, Kravitz EA, Potter DD (1967) Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate. J Neurophysiol 30: 725–752

    CAS  PubMed  Google Scholar 

  • Ozoe Y, Akamatsu M (2001) Non-competitive GABA antagonists: probing the mechanisms of their selectivity for insect versus mammalian receptors. Pest Manag Sci 57: 923–931

    Article  CAS  PubMed  Google Scholar 

  • Ozoe Y, Eto M (1986) Bridged bicyclic organophosphorus compounds as a probe for toxicological study on GABA synapse. In Clark JM, Matsumura F (eds) Membrane receptors and enzymes as targets of insecticidal action. Prenum Press, New York, pp. 75–105

    Google Scholar 

  • Ozoe Y, Matsumura F (1986) Structural requirements for bridged bicyclic compounds acting on picrotoxinin receptor. J Agric Food Chem 34: 126–134

    Article  CAS  Google Scholar 

  • Ozoe Y, Sawada Y, Mochida K, Nakamura T, Matsumra F (1990) Structure–ativity relationships in a new series of insecticidally active dioxatricycloalkenes derived by structural comparison of the GABA antagonists bicycloorthocarboxulates and endosulfan. J Agric Food Chem 38: 1264–1268

    Article  CAS  Google Scholar 

  • Ozoe Y, Kuwano E, Eto M (1993a) Potency of isomers of 8-isopropyl-6-oxabicyclo[3.2.1]octan-7-one at the picrotoxinin binding site in the GABA-gated chloride channel in rat brain. Biosci Biotech Biochem 57: 504–505

    Article  CAS  Google Scholar 

  • Ozoe Y, Takayama T, Sawada Y, Mochida K, Nakamura T, Matsumura F (1993b) Synthesis and structure-activity relationships of a series of insecticidal dioxatricyclododecenes acting as the noncompetitive antagonist of GABAA receptors. J Agric Food Chem 41: 2135–2141

    Article  CAS  Google Scholar 

  • Ozoe Y, Akamatsu M, Higata T, Ikeda I, Mochida, K, Koike K, Ohmoto T, Nikaido N (1998a) Picrodendrin and related terpenoid antagonists reveal structural differences between ionotropic GABA receptors of mammals and insects. Bioorg Med Chem 6: 481–492

    Article  CAS  PubMed  Google Scholar 

  • Ozoe Y, Niina K, Matsumoto K, Ikeda I, Mochida K, Ogawa C, Matsuno A, Miki M, Yanagi K (1998b) Actions of cyclic esters, S-esters, and amides of phenyl- and phenylthiophosphonic acids on mammalian and insect GABA-gated chloride channels. Bioorg Med Chem 6: 73–83

    Article  CAS  PubMed  Google Scholar 

  • Ozoe Y, Yagi K, Nakamura M, Akamatsu M, Miyake T, Matsumura F (2000) Fipronil-related heterocyclic compounds: structure–activity relationships for interaction with γ-aminobutyric acid- and voltage-gated ion channels and insecticidal action. Pestic Biochem Physiol 66: 92–104

    Article  CAS  Google Scholar 

  • Ozoe Y, Ishikawa S, Tomiyama S, Ozoe F, Kozaki T, Scott JG (2007) Antagonism of the GABA receptor of dieldrin-resistant houseflies by fipronil and its analogues. In: Lyga JW, Theodoridis G (eds) Synthesis and chemistry of agrochemicals VII, ACS Symposium Series 948. American Chemical Society, Washington, DC, pp. 39–50

    Chapter  Google Scholar 

  • Palmer CJ, Casida JE (1992) Insecticidal 1,3-dithianes and 1,3-dithiane 1,1-dioxides. J Agric Food Chem 40: 492–496

    Article  CAS  Google Scholar 

  • Palmer CJ, Cole LM, Larkin JP, Smith IH, Casida JE (1991) 1-(4-Ethynylphenyl)-4-substituted-2,6,7-trioxabicyclo[2.2.2]octanes; effects of 4-substituent on toxicity to houseflies and mice and potency at the GABA-gated chloride channel. J Agric Food Chem 39: 1329–1334

    Article  CAS  Google Scholar 

  • Perret P, Sarda X, Wolff M, Wu T-T, Bushey D, Goeldner M (1999) Interaction of non-competitive blockers within the γ-aminobutyric acid type A chloride channel using chemically reactive probes as chemical sensors for cysteine mutants. J Biol Chem 274: 25350–25354

    Article  CAS  PubMed  Google Scholar 

  • Pulman DA, Smith IH, Larkin JP, Casida JE (1996) Heterocyclic insecticides acting at the GABA-gated chloride channel: 5-aryl-2-arylpyrimidines and -1,3-thiazines. Pestic Sci 46: 237–245

    Article  CAS  Google Scholar 

  • Ratra GS, Casida JE (2001) GABA receptor subunit composition relative to insecticide potency and selectivity. Toxicol Lett 122: 215–222

    Article  CAS  PubMed  Google Scholar 

  • Ratra GS, Kamita SG, Casida JE (2001) Role of human GABAA receptor β3 subunit in insecticide toxicity. Toxicol Appl Pharmacol 172: 233–240

    Article  CAS  PubMed  Google Scholar 

  • Rauh JJ, Benner E, Schnee ME, Cordova D, Holyoke CW, Howard MH, Bai D, Buckingham SD, Hutton ML, Hamon A, Roush RT, Sattelle DB (1997) Effects of [3H]-BIDN, a novel bicyclic dinitrile radioligand for GABA-gated chloride channels of insects and vertebrates. Br J Pharmacol 121: 1496–1505

    Article  CAS  PubMed  Google Scholar 

  • Raymond V, Sattelle DB (2002) Novel animal-health drug targets from ligand-gated chloride channels. Nat Rev Drug Discov 1: 427–436

    Article  CAS  PubMed  Google Scholar 

  • Roberts E, Frankel S (1950) γ-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187: 55–63

    CAS  PubMed  Google Scholar 

  • Roberts E, Chase TN, Tower DB (eds) (1976) GABA in nervous system function. Kroc Foundation Series. Volume 5. Raven Press, New York

    Google Scholar 

  • Satoh H, Daido H, Nakamura T (2005) Preliminary analysis of the GABA-induced current in cultured CNS neurons of the cutworm moth, Spodoptera litura. Neurosci Lett 381: 125–130

    Article  CAS  PubMed  Google Scholar 

  • Sattelle DB (1990) GABA receptors of insects. Adv Insect Physiol 22: 1–113

    Article  Google Scholar 

  • Sattelle DB (1992) Receptors for l-glutamate and GABA in the nervous system of an insect (Periplaneta americana). Comp Biochem Physiol 103C: 429–438

    CAS  Google Scholar 

  • Sattelle DB, Pinnock RD, Wafford KA, David JA (1988) GABA receptors on the cell-body membrane of an identified insect motor neuron. Proc R Soc Lond B 232: 443–456

    Article  CAS  PubMed  Google Scholar 

  • Sattelle DB, Lummis SCR, Wong JFH, Rauh JJ (1991) Pharmacology of insect GABA receptors. Neurochem Res 16: 363–374

    Article  CAS  PubMed  Google Scholar 

  • Sattelle DB, Harrison JB, Chen HH, Bai D, Takeda M (2000) Immunocytochemical localization of putative γ-aminobutyric acid receptor subunits in the head ganglia of Periplaneta americana using an anti-RDL C-terminal antibody. Neurosci Lett 289: 197–200

    Article  CAS  PubMed  Google Scholar 

  • Sattelle DB, Bai D, Chen HH, Skeer JM, Buckingham SD, Rauh JJ (2003) Bicuculline-insensitive GABA-gated Cl channels in the larval nervous system of the moth Manduca sexta. Invert Neurosci 5: 37–43

    Article  CAS  PubMed  Google Scholar 

  • Schmidt TJ, Gurrath M, Ozoe Y (2004) Structure–activity relationships of seco-prezizaane and picrotoxane/picrodendrane terpenoids by Quasar receptor-surface modeling. Bioorg Med Chem 12: 4159–4167

    Article  CAS  PubMed  Google Scholar 

  • Schnee ME, Rauh JJ, Buckingham SD, Sattelle DB (1997) Pharmacology of skeletal muscle GABA-gated chloride channels in the cockroach Periplaneta americana. J Exp Biol 200: 2947–2955

    CAS  PubMed  Google Scholar 

  • Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA (1987) Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328: 221–227

    Article  CAS  PubMed  Google Scholar 

  • Schuske K, Beg AA, Jorgensen EM (2004) The GABA nervous system in C. elegans. Trends Neurosci 27: 407–414

    Article  CAS  PubMed  Google Scholar 

  • Shoop WL, Mrozik H, Fisher MH (1995) Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol 59: 139–156

    Article  CAS  PubMed  Google Scholar 

  • Shotkoski F, Lee H-J, Zhang H-G, Jackson MB, ffrench-Constant RH (1994) Functional expression of insecticide-resistant GABA receptors from the mosquito Aedes aegypti. Insect Mol Biol 3: 283–287

    Article  CAS  PubMed  Google Scholar 

  • Sieghart W (1995) Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol Rev 47: 181–234

    CAS  PubMed  Google Scholar 

  • Sigel E, Baur R (1987) Effect of avermectin B1a on chick neuronal γ-aminobutyrate receptor channels expressed in Xenopus oocytes. Mol Pharmacol 32: 749–752

    CAS  PubMed  Google Scholar 

  • Smith MM, Warren VA, Thomas BS, Brochu RM, Ertel EA, Rohrer S, Schaeffer J, Schmatz D, Petuch BR, Tang YS, Meinke PT, Kaczorowski GJ, Cohen CJ (2000) Nodulisporic acid opens insect glutamate-gated chloride channels: identification of a new high affinity modulator. Biochemistry 39: 5543–5554

    Article  CAS  PubMed  Google Scholar 

  • Soloway SB (1965) Correlation between biological activity and molecular structure of the cyclodiene insecticides. In: Metcalf RL (ed) Advances in pest control research, Vol. VI. Interscience Publishers, New York, pp. 85–126

    Google Scholar 

  • Squires RF, Casida JE, Richardson M, Saederup E (1983) [35S]t-Butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to γ-aminobutyric acid-A and ion recognition sites. Mol Pharmacol 23: 326–336

    CAS  PubMed  Google Scholar 

  • Strambi C, Cayre M, Sattelle DB, Augier R, Charpin P, Strambi A (1998) Immunocytochemical mapping of an RDL-like GABA receptor subunit and of GABA in brain structures related to learning and memory in the cricket Archeta domesticus. Learn Mem 5: 78–89

    CAS  PubMed  Google Scholar 

  • Takeda M, Ohnishi H (1994) Cockroach neurons share the epitope for an antiserum against mammalian glutamate decarboxylase (GAD). Appl Entomol Zool 29: 157–165

    CAS  Google Scholar 

  • Takeuchi A, Takeuchi N (1969) A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J Physiol 205: 377–391

    CAS  PubMed  Google Scholar 

  • Tandon R, LePage KT, Kaplan RM (2006) Cloning and characterization of genes encoding α and β subunits of glutamate-gated chloride channel protein in Cylicocyclus nassatus. Mol Biochem Parasitol 150: 46–55

    Article  CAS  PubMed  Google Scholar 

  • Thompson SM, Gähwiler BH (1992) Comparison of the actions of baclofen at pre- and postsynaptic receptors in the rat hippocampus in vitro. J Physiol 451: 329–345

    CAS  PubMed  Google Scholar 

  • Thompson M, Steichen JC, ffrench-Constant RH (1993) Conservation of cyclodiene insecticide resistance-associated mutations in insects. Insect Mol Biol 2: 149–154

    Article  CAS  PubMed  Google Scholar 

  • Udenfriend S (1950) Identification of γ-aminobutyric acid in brain by the isotope derivative method. J Biol Chem 187: 65–69

    CAS  PubMed  Google Scholar 

  • Umesh A, Gill SS (2002) Immunocytochemical localization of a Manduca sexta γ-aminobutyric acid transporter. J Comp Neurol 448: 388–398

    Article  CAS  PubMed  Google Scholar 

  • Usherwood PNR, Grundfest H (1965) Peripheral inhibition in skeltal muscle of insects. J Neurophysiol 28: 497–518

    CAS  PubMed  Google Scholar 

  • Uwai K, Ohashi K, Takaya Y, Oshima Y, Furukawa K, Yamagata K, Omura T, Okuyama S (2001) Virol A, a toxic trans-polyacetylenic alcohol of Cicuta virosa, selectively inhibits the GABA-induced Cl current in acutely dissociated rat hippocampal CA1 neurons. Brain Res 889: 174–180

    Article  CAS  PubMed  Google Scholar 

  • Vassilatis DK, Arena JP, Plasterk RHA, Wilkinson HA, Schaeffer JM, Cully DF, Van der Ploeg LHT (1997) Genetic and biochemical evidence for a novel avermectin-sensitive chloride channel in Caenorhabditis elegans. Isolation and characterization. J Biol Chem 272: 33167–33174

    CAS  Google Scholar 

  • Waldvogel HJ, Billinton A, White JH, Emson PC, Faull RLM (2004) Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the α1 subunit of the GABAA receptor and the GABABR1 and GABABR2 receptor subunits. J Comp Neurol 470: 339–356

    Article  CAS  PubMed  Google Scholar 

  • Watt EE, Betts BA, Kotey FO, Humbert DJ, Griffith TN, Kelly EW, Veneskey KC, Gill N, Rowan KC, Jenkins A, Hall AC (2008) Menthol shares general anesthetic activity and sites of action on the GABAA receptor with the intravenous agent, propofol. Eur J Pharmacol 590: 120–126

    Article  CAS  PubMed  Google Scholar 

  • Wegerhoff R (1999) GABA and serotonin immunoreactivity during postembryonic brain development in the beetle Tenebrio molitor. Microsc Res Tech 45: 154–164

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Scott JG (1999) Genetic and biochemical mechanisms limiting fipronil toxicity in the LPR strain of house fly, Musca domestica. Pestic Sci 55: 988–992

    Article  CAS  Google Scholar 

  • Wolff MA, Wingate VPM (1998) Characterization and comparative pharmacological studies of a functional γ-aminobutyric acid (GABA) receptor cloned from the tobacco budworm, Heliothis virescens (Noctuidae:Lepidoptera). Invert Neurosci 3: 305–315

    Article  CAS  PubMed  Google Scholar 

  • Wolstenholme AJ, Rogers AT (2005) Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 131: S85–S95

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Covey DF, Akabas MH (1995) Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants. Biophys J 69: 1858–1867

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki Y, Nishikawa M, Mizunami M (1998) Three classes of GABA-like immunoreactive neurons in the mushroom body of the cockroach. Brain Res 788: 80–86

    Article  CAS  PubMed  Google Scholar 

  • Yoon K-W, Covey DF, Rothman SM (1993) Multiple mechanisms of picrotoxin block of GABA-induced currents in rat hippocampal neurons. J Physiol 464: 423–439

    CAS  PubMed  Google Scholar 

  • Zhang H-G, ffrench-Constant RH, Jackson MB (1994) A unique amino acid of the Drosophila GABA receptor with influence on drug sensitivity by two mechanisms. J Physiol 479: 65–75

    CAS  PubMed  Google Scholar 

  • Zhang H-G, Lee H-J, Rocheleau T, ffrench-Constant RH, Jackson MB (1995) Subunit composition determines picrotoxin and bicuculline sensitivity of Drosophila γ-aminobutyric acid receptors. Mol Pharmacol 48: 835–840

    CAS  PubMed  Google Scholar 

  • Zhao X, Salgado VL, Yeh JZ, Narahashi T (2003a) Differential actions of fipronil and dieldrin insecticides on GABA-gated chloride channels in cockroach neurons. J Pharmacol Exp Ther 306: 914–924

    Article  CAS  PubMed  Google Scholar 

  • Zhao X-Y, Wang Y, Li Y, Chen X-Q, Yang H-H, Yue J-M, Hu G-Y (2003b) Songorine, a diterpenoid alkaloid of the genus Aconitum, is a novel GABAA receptor antagonist in rat brain. Neurosci Lett 337: 33–36

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Salgado VL, Yeh JZ, Narahashi T (2004a) Kinetic and pharmacological characterization of desensitizing and non-desensitizing glutamate-gated chloride channels in cockroach neurons. NeuroToxicology 25: 967–980

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Yeh JZ, Salgado VL, Narahashi T (2004b) Fipronil is a potent open channel blocker of glutamate-activated channels in cockroach neurons. J Pharmacol Exp Ther 310: 192–201

    Article  CAS  PubMed  Google Scholar 

  • Zhorov BS, Bregestovski PD (2000) Chloride channels of glycine and GABA receptors with blockers: Monte Carlo minimization and structure–activity relationships. Biophys J 78: 1786–1803

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Professor Jeffrey G. Scott (Cornell University) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Ozoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ozoe, Y., Takeda, M., Matsuda, K. (2009). γ-Aminobutyric Acid Receptors: A Rationale for Developing Selective Insect Pest Control Chemicals. In: Ishaaya, I., Horowitz, A. (eds) Biorational Control of Arthropod Pests. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2316-2_6

Download citation

Publish with us

Policies and ethics