Skip to main content

Tyramine and Octopamine Receptors as a Source of Biorational Insecticides

  • Chapter
  • First Online:
Book cover Biorational Control of Arthropod Pests

Abstract

Biogenic amines such as dopamine (DA), octopamine (OA) and tyramine (TA) are widely distributed in the central nervous system of insects (Evans 1980). The administration of biogenic amines and agonists or antagonists for their receptors and direct measurement of concentrations of biogenic amines under various conditions indicate that these agents function as neurotransmitters, neuromodulators and neurohormones. They are involved in regulating many physiological phenomena such as learning (Dudai 1986), memory (Yovell and Dudai 1987), circadian rhythms (Muszynska-Pytel and Cymborowski 1978), contraction rhythm of muscles, flight (Goosey and Candy 1980), walking, feeding behaviour (Long et al. 1986), juvenile hormone (JH) (Lafon-Cazal and Baehr 1988; Granger et al. 1996; Grutenko et al. 2007), mating behaviour, pheromone production (Rafaeli and Gileadi 1995) and the reaction to various stressor stimuli (Davenport and Evans 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson SO (1979) Biochemistry of insect cuticle. Annu Rev Entomol 24: 29–61

    Google Scholar 

  • Ando T, Kasuga K, Yajima Y, Kataoka H, Suzuki A (1996) Termination of sex pheromone production in mated females of the silkworm moth. Archiv Insect Biochem Physiol 31: 207–218

    Google Scholar 

  • Arakawa S, Gocayne JD, McCombie WR, Urquhart DA, Hall LM, Fraser CM, Venter JC (1990) Cloning, localization, and permanent expression of a Drosophila octopamine receptor. Neuron 4: 343–354

    PubMed  Google Scholar 

  • Axelrod J, Saavedra JM (1977) Octopamine. Nature 265: 501–504

    PubMed  Google Scholar 

  • Bailey BA, Martin RJ, Downer RGH (1983) Haemolymph octopamine levels during and following flight in the American cockroach, Periplaneta americana L. Can J Zool 62: 19–22

    Google Scholar 

  • Barak AV, Burkholder WE (1977) Studies on the biology of Attagenus elongatulus Casey (Coleoptera: Dermestidae) and the effects of larval crowding on pupation and life cycle. J Stored Prod Res 13: 169–175

    Google Scholar 

  • Berreur P, Porcheron P, Berreur-Bonnenfant J, Dray F (1979) External factors and ecdysone release in Calliphora erythrocephala. Experientia 35: 1031–1031

    Google Scholar 

  • Bischof LJ, Enan EE (2004) Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Insect Biochem Mol Biol 34: 511–521

    PubMed  Google Scholar 

  • Blenau W, Balfanz S, Baumann A (2000) Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J Neurochem 74: 900–908

    PubMed  Google Scholar 

  • Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18(7): 1723–1729

    PubMed  Google Scholar 

  • Bodnaryk RP (1980) Changes in brain octopamine levels during metamorphosis of the moth, Mamestra configurata. Can J Zool 10: 169–173

    Google Scholar 

  • Bogus’ MI, Wis’niewski JR, Cymborowski B (1987) Effect of lighting conditions on endocrine events in Galleria mellonella. J Insect Physiol 33: 355–362

    Google Scholar 

  • Brown CS, Nestler C (1985) Catecholamines and indolalkylamines, In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 11. Pergamon Press, Oxford, pp. 435–484

    Google Scholar 

  • Chang D-J, Li X-C, Lee Y-S, Kim H-K, Kim US, Cho NJ, Lo X, Weiss KR, Kandel ER, Kaang B-K (2000) Activation of a heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in Aplysia sensory neurons. Proc Natl Acad Sci USA 97: 1829–1834

    PubMed  Google Scholar 

  • Chernysh SI (1991) Neuroendocrine system in insect stress. In: Ivanovic J, Jankovic-Hladni M (eds) Hormones and Metabolism in Insect Stress. CRC, Boca Raton, FL, pp. 69–97

    Google Scholar 

  • Choi M-Y, Fuerst E-J, Rafaeli A, Jurenka R (2003) Identification of a G protein-coupled receptor for pheromone biosynthesis activating neuropeptide from pheromone glands of the moth Helicoverpa zea. Proc Natl Acad Sci USA 100: 9721–9726

    PubMed  Google Scholar 

  • Christensen TA, Itagaki H, Teal PE, Jasensky RD, Tumlinson JH, Hildebrand JG (1991) Innervation and neural regulation of the sex pheromone gland in female Heliothis moths. Proc Natl Acad Sci USA 88: 4971–4975

    PubMed  Google Scholar 

  • Cymborowski B, Bogus’ MI (1976) Juvenilizing effect of cooling on Galleria mellonella. J Insect Physiol 22: 669–672

    Google Scholar 

  • Davenport A, Evans PD (1984) Stress-induced changes in the octopamine levels of insect haemolymph. Insect Biochem 14: 135–143

    Google Scholar 

  • Dudai Y (1986) Cyclic AMP and learning in Drosophila. Adv Cyclic Nucl Protein Phos Res 20: 343–361

    Google Scholar 

  • Duportets L, Gadenne C, Dufour M, Couillaud F (1998) The pheromone biosynthesis activating neuropeptide (PBAN) of the black cutworm moth, Agrotis ipsilon: immunohistochemistry, molecular characterization and bioassay of its peptide sequence. Insect Biochem Mol Biol 28: 591–599

    PubMed  Google Scholar 

  • Dymond GD, Evans PD (1979) Biogenic amines in the nervous system of the cockroach, Periplaneta americana: association of the octopamine with ther mushroom bodies and dorsal unpaired median (DUM) neurons. Insect Biochem 9: 535–545

    Google Scholar 

  • Erspamer V, Boretti G (1951) Identification and characterization by paper chromatography of enteramine, octopamine, tyramine, histamine, and allied substances in extracts of posterior salivary glands of Octopada and in other tissues of vertebrates and invertebrates. Arch Int Pharmacodyn 88: 296–332

    PubMed  Google Scholar 

  • Evans PD (1978) Octopamine distribution in the insect nervous system. J Neurochem 30: 1009–1013

    Google Scholar 

  • Evans PD (1980) Biogenic amines in the insect nervous system. Adv Insect Physiol 15: 317–473

    Google Scholar 

  • Evans PD (1981) Multiple receptor types for octopamine in the locust. J Physiol 318: 99–122

    PubMed  Google Scholar 

  • Evans PD (1985) Octopamine. In: Kerkut GA, Gilbert G (eds) Comprehensive Insect Physiology Biochemistry Pharmacology, Vol. 11. Pergamon Press, Oxford, pp. 499–530

    Google Scholar 

  • Evans PD (1986) Biogenic amine receptors and their mode of action in insects. In: Borkovec AB, Gelman DB (eds) Insect Neurochemistry and Neurophysiology. Humana Press, Clifton, New Jersey, pp. 117–141

    Google Scholar 

  • Evans PD, Maqueira B (2005) Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert Neurosci 5: 111–118

    PubMed  Google Scholar 

  • Fan Y, Rafaeli A, Gileadi C, Kubli E, Applebaum SW (1999) Drosophila melanogaster sex peptide stimulates JH-synthesis and depresses sex pheromone production in Helicoverpa armigera. J Insect Physiol 45: 127–133

    PubMed  Google Scholar 

  • Fan Y, Rafaeli A, Moshitzky P, Kubli E, Choffat Y, Applebaum SW (2000) Common functional elements of Drosophila melanogaster-seminal peptides involved in reproduction of Drosophila melanogaster and Helicoverpa armigera. Insect Biochem Molec Biol 30: 805–812

    Google Scholar 

  • Fonagy A, Yokoyama N, Ozawa R, Okano K, Tatsuki S, Maeda S, Matsumoto S (1999) Involvement of calcineurin in the signal transduction of PBAN in the silkworm, Bombyx mori (Lepidoptera). Comp Biochem Physiol 124B: 51–60

    Google Scholar 

  • Foster SP (1993) Neural inactivation of sex pheromone production in mated lightbrown apple moths, Epiphyas postvittana (Walker). J Insect Physiol 39: 267–273

    Google Scholar 

  • Foster SP, Roelofs WL (1994) Regulation of pheromone production in virgin and mated females of two tortricid moths. Arch Insect Biochem Physiol 25: 271–285

    Google Scholar 

  • Fuzeau-Braesch S, Coulon JF, David JC (1979) Octopamine levels during the moult cycle and adult development in the migratory locust Locusta migratoria. Experientia 35: 1349–1350

    PubMed  Google Scholar 

  • Gerhardt CC, Bakker RA, Piek GJ, Planta RJ, Vreugdenhil E, Leyse JE, Van Heerikhuizen H (1997) Molecular cloning and pharmacological characterization of a molluscan octopamine receptor. Mol Pharmacol 51: 293–300

    PubMed  Google Scholar 

  • Giebultowicz JM, Raina AK, Uebel EC, Ridgway RL (1991) Two-step regulation of sex-pheromone decline in mated gypsy moth females. Arch Insect Biochem Physiol 16: 95–105

    Google Scholar 

  • Gilbert LI, Schneiderman HA (1959) Prothoracic stimulation by juvenile hormone extracts of insects. Nature (London) 184: 171–173

    Google Scholar 

  • Gole JWD, Downer RGH (1979) Elevation of adenosine 3’,5’-monophosphate by octopamine in fat body of the American cockroach, Periplaneta americana L. Comp Biochem Physiol 64C: 223–226

    Google Scholar 

  • Goosey MW, Candy DJ (1980) Effects of D- and L-octopamine and of pharmacological agents on the metabolism of locust flight muscle. Biochem Soc Trans 8: 532–533

    PubMed  Google Scholar 

  • Granger NA, Sturgis SL, Ebersohl R, Geng C, Sparks TC (1996) Dopaminergic control of corpora allata activity in the larval tobacco hormworm, Manduca sexta. Arch Insect Biochem Physiol 32: 449–466

    PubMed  Google Scholar 

  • Gruetzmacher MC, Gilbert LI, Bollenbacher WE (1984) Indirect stimulation of the prothoracic glands of Manduca sexta by juvenile hormone: evidence for a fat body stimulatory factor. J Insect Physiol 30: 771–778

    Google Scholar 

  • Grutenko NE, Karpova EK, Alekseev AA, Chentsova NA, Bogomolova EV, Bownes M, Rauschenbach IY (2007) Effects of octopamine on reproduction, juvenile hormone metabolism, dopamine, and 20 hydroxyecdysterone contents in Drosophila. Arch Insect Biochem Physiol 65: 85–94

    Google Scholar 

  • Han K-A, Millar NS, Davis RL (1998) A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J Neurosci 18: 3650–3658

    PubMed  Google Scholar 

  • Hansch C, Fujita T (1964) ρ-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86: 1616–1626

    CAS  Google Scholar 

  • Hansch C, Leo A (1995) In: Exploring QSAR: Fundamentals and Applications in Chemistry and Biochemisry. American Chemical Society, Washington, DC

    Google Scholar 

  • Harris JW, Woodring J (1992) Effects of stress, age, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera L.) brain. J Insect Physiol 38: 29–35

    Google Scholar 

  • Hirashima A (2004) Involvement of tyramine and octopamine receptors in insect behaviour and metamorphosis. Curr Topics Biotech 1: 133–138

    Google Scholar 

  • Hirashima A (2008) Regulation of bombykol production by tyramine and octopamine in Bombyx mori. J Pestic Sci 33: 21–23

    Google Scholar 

  • Hirashima A, Eto M (1993a) Biogenic amines in Periplaneta americana L.: Accumulation of octopamine, synephrine, and tyramine by stress. Biosci Biotech Biochem 57: 172–173

    Google Scholar 

  • Hirashima A, Eto M (1993b) Effect of stress on levels of octopamine, dopamine and serotonin in the American cockroach (Periplaneta americana L.). Comp Biochem Physiol 105C: 279–284

    Google Scholar 

  • Hirashima, Eto M (1993c) Chemical-induced changes in the biogenic amine levels of Periplaneta americana L. Pestic Biochem Physiol 46: 131–140

    Google Scholar 

  • Hirashima A, Huang H (2008) Homology modeling, agonist binding site identification, and docking in octopamine receptor of Periplaneta americana. Comp Biol Chem 32: 185–190

    Google Scholar 

  • Hirashima A, Ueno R, Eto M (1992a) Effects of various stressors on larval growth and whole-body octopamine levels of Tribolium castaneum. Pestic Biochem Physiol 44: 217–225

    Google Scholar 

  • Hirashima A, Yoshii Y, Eto M (1992b) Action of 2-aryliminothiazolidines on octopamine-sensitive adenylate cyclase in the American cockroach nerve cord and on the two-spotted spider mite Tetranycus urticae Koch. Pestic Biochem Physiol 44: 101–107

    Google Scholar 

  • Hirashima A, Nagano T, Eto M (1993a) Stress-induced changes in the biogenic amine levels and larval growth of Tribolium castaneum Herbst. Biosci Biotech Biochem 58: 1206–1209

    Google Scholar 

  • Hirashima A, Nagano T, Eto M (1993b) Effect of various insecticides on the larval growth and biogenic amine levels of Tribolium castaneum Herbst. Comp Biochem Physiol 107C: 393–398

    Google Scholar 

  • Hirashima A, Nagano T, Takeya R, Eto M (1993c) Effect of larval density on whole-body biogenic amine levels of Tribolium freemani Hinton. Comp Biochem Physiol 106C: 457–461

    Google Scholar 

  • Hirashima A, Takeya R, Taniguchi E, Eto M (1995a) Metamorphosis, activity of juvenile-hormone esterase and alteration of ecdysteroid titres: effects of larval density and various stressors on the red flour beetle, Tribolium freemani Hinton (Coleoptera: Tenebrionidae). J Insect Physiol 44: 383–388

    Google Scholar 

  • Hirashima A, Ueno R, Takeya R, Taniguchi E, Eto M (1995b) Effect of octopamine agonists on larval-pupal transformation of red flour beetle (Tribolium freemani Hinton). Pestic Biochem Physiol 51: 83–89

    Google Scholar 

  • Hirashima A, Hirokado S, Takeya R, Taniguchi E, Eto M (1998) Metamorphosis of the red flour beetle, Tribolium freemani Hinton (Coleoptera: Tenebrionidae): Alteration of octopamine modulates activity of juvenile-hormone esterase, ecdysteroid titer, and pupation. Arch Insect Biochem Physiol 37: 33–46

    Google Scholar 

  • Hirashima A, Nagata T, Pan C, Kuwano E, Taniguchi E, Eto M (1999a) Three dimensional molecular-field analyses of octopaminergic agonists and antagonists for the locust neuronal octopamine receptor (OAR3). J Mol Grap Model 17: 198–206

    Google Scholar 

  • Hirashima A, Pan C, Kuwano E, Taniguchi E, Eto M (1999b) Three-dimensional pharmacophore hypotheses for the locust neuronal octopamine receptor (OAR3): 2. Agonists. Bioorg Med Chem 7: 1437–1443

    Google Scholar 

  • Hirashima A, Sukhanova MJ, Rauschenbach IY (2000) Biogenic amines in Drosophila virilis under stress conditions. Biosci Biotech Biochem 64: 2625–2630

    Google Scholar 

  • Hirashima A, Morimoto M, Ohta H, Kuwano E, Taniguchi E, Eto M (2002) Three-dimensional common-feature hypotheses for octopamine agonist 1-arylimidazolidine-2-thiones. Int J Mol Sci 3: 56–68

    Google Scholar 

  • Hirashima A, Eiraku T, Kuwano E, Eto M (2003a) Three-dimensional molecular-field analyses of agonists for tyramine receptor which inhibit sex-pheromone production in Plodia interpunctella. Internet Electron J Mol Des 2: 511–526

    Google Scholar 

  • Hirashima A, Eiraku T, Shigeta Y, Kuwano E, Taniguchi E, Eto M (2003b) Three-dimensional pharmacophore hypotheses of octopamine/tyramine agonists which inhibit [1–14C]acetate incorporation in Plodia interpunctella. Bioorg Med Chem 11: 95–103

    PubMed  Google Scholar 

  • Hirashima A, Kuwano E, Eto M (2003c) Comparative receptor surface analysis of octopaminergic antagonists for the locust neuronal octopamine receptor. Comput Biol Chem 27: 531–540

    PubMed  Google Scholar 

  • Hirashima A, Morimoto M, Kuwano E, Eto M (2003d) Octopaminergic agonists for the cockroach neuronal octopamine receptor. J Insect Sci 3: 10 http://www. insectscience.org/

  • Hirashima A, Shigeta Y, Eiraku T, Kuwano E (2003e) Inhibitors of calling behavior of Plodia interpunctella. J Insect Sci 3: 4 http://insectscience.org/3.4/

  • Hirashima A, Eiraku T, Kuwano E, Eto M (2004a) Comparative receptor surface analysis of agonists for tyramine receptor which inhibit sex-pheromone production in Plodia interpunctella. Combinat Chem High Throughput Screen 7: 83–91

    Google Scholar 

  • Hirashima A, Kimizu M, Shigeta Y, Matsugu S, Eiraku T, Kuwano E, Eto M (2004b) Pheromone production of female Plodia interpunctella was inhibited by tyraminergic antagonists. Chem Biod 1: 1652–1667

    Google Scholar 

  • Hirashima A, Matsushita M, Ohta H, Nakazono K, Kuwano E, Eto M (2006) Prevention of progeny formation in Drosophila melanogaster by 1-arylimidazole-2(3H)-thiones. Pestic Biochem Physiol 85: 15–20

    Google Scholar 

  • Hirashima A, Yamaji H, Yoshizawa T, Kuwano E, Eto M (2007) Effect of tyramine and stress on sex-pheromone production in the pre- and post-mating silkworm moth, Bombyx mori. J Insect Physiol 53: 1242–1249

    PubMed  Google Scholar 

  • Hiripi L, Juhos S, Downer RG (1994) Characterization of tyramine and octopamine receptors in the insect (Locusta migratoria migratorioides) brain. Brain Res 633: 119–126

    PubMed  Google Scholar 

  • Hodgetts RB, Konopka RJ (1973) Tyrosine and catecholamine metabolism in a wild-type Drosophila melanogaster and a mutant, ebony. J Insect Physiol 19: 1211–1220

    PubMed  Google Scholar 

  • Hull JJ, Kajigaya R, Imai K, Matsumoto S (2007) The Bombyx mori sex pheromone biosynthetic pathway is not mediated by cAMP. J Insect Physiol 53: 782–793

    PubMed  Google Scholar 

  • Ichikawa T (1995) Neural inhibition of PBAN release after mating in Bombyx mori. In: Suzuki A, Kataoka H, Matsumoto S (eds) Molecular Mechanisms of Insect Metamorphosis and Diapause. Industrial Publishing and Consulting Inc., Tokyo, pp. 169–178

    Google Scholar 

  • Ichikawa T, Shiota T, Kuniyoshi H (1996a) Neural inactivation of sex pheromone production in mated females of the silkworm moth, Bombyx mori. Zool Sci 13: 27–33

    Google Scholar 

  • Ichikawa T, Shiota T, Shimizu I (1996b) Functional differentiation of neurosecretory cells with immunoreactive diapause hormone and pheromone biosynthesis activating neuropeptide of the moth, Bombyx mori. Zool Sci 13: 21–25

    Google Scholar 

  • Ivanovic’ J, Jankovic’-Hlandni M, Stanic’ V, Kalafatic’ V (1985) Differences in the sensitivity of protocerebral neurosecretory cells arising from the effect of different factors in Morimus funereus larvae. Comp Biochem Physiol 80A: 107–113

    Google Scholar 

  • Jankovic’-Hlandni M, Ivanovic’ J, Nenadovic’ V, Stanic’ V (1983) The selective response of the protocerebral neurosecretory cells of the Cerambyx cerdo larvae to the effect of different factors. Comp Biochem Physiol 74A: 131–136

    Google Scholar 

  • Jones G, Hammock BD (1983) Prepupal regulation of juvenile hormone esterase through direct induction by juvenile hormone. J Insect Physiol 29: 471–475

    Google Scholar 

  • Jurenka, RA, Fabriás G, Ramaswamy S, Roelofs WL (1993) Control of pheromone biosynthesis in mated redbanded leafroller moths. Arch Insect Biochem Physiol 24: 129–137

    Google Scholar 

  • Jurenka RA, Jacquin E, Roelofs WL (1991) Stimulation of pheromone biosynthesis in the moth Helicoverpa zea, Action of a brain hormone on pheromone glands involves Ca2+ and cAMP as second messengers. Proc Natl Acad Sci USA 88: 8621–8625

    PubMed  Google Scholar 

  • Kaatz H, Eichmüller S, Kreissl S (1994) Stimulatory effect of octopamine on juvenile hormone biosynthesis in honey bees (Apis mellifera): Physiological and immunocytochemical evidence. J Insect Physiol 40: 865–872

    Google Scholar 

  • Kalogianni E, Pflüger HJ (1992) The identification of motor and unpaired median neurones innervating the locust oviduct. J Exp Biol 168: 177–198

    Google Scholar 

  • Kalogianni E, Theophilidis G (1993) Centrally generated rhythmic activity and modulatory function of the oviductal dorsal unpaired median (DUM) neurones in two orthopteran species (Calliptamus SP. and Decticus albifrons). J Exp Biol 174: 123–138

    Google Scholar 

  • Kingan TG, Bodner WM, Raina AK, Shabanowitz J, Hunt DF (1995) The loss of female sex pheromone after mating in the corn earworm moth Helicoverpa zea: Identification of a male pheromonostatic peptide. Proc Natl Acad Sci USA 93: 12621–12625

    Google Scholar 

  • Kingan TG, Thomas-Laemont PA, Raina AK (1993) Male accessory gland factors elicit change from ‘virgin’ to ‘mated’ behaviour in the female corne arworm moth Helicoverpa zea. J Exp Biol 183: 61–76

    Google Scholar 

  • Kitamura A, Nagasawa H, Kataoka H, Ando T, Suzuki A (1990) Amino acid sequence of pheromone biosynthesis activating neuropeptide-II (PBAN-II) of the silkmoth, Bombyx mori. Agric Biol Chem 54: 2495–2497

    PubMed  Google Scholar 

  • Kitamura A, Nagasawa H, Kataoka H, Inoue T, Matsumoto S, Ando T, Suzuki A (1989) Amino acid sequence of pheromone-biosynthesis-activating neuropeptide (PBAN) of the silkworm, Bombyx mori. Biochem Biophys Res Comm 163: 520–526

    PubMed  Google Scholar 

  • Kotaki T, Fujii H (1995) Crowding inhibits pupation in Tribolium freemani: contact chemical and mechanical stimuli are involved. Entomol Exp Appl 74: 145–149

    Google Scholar 

  • Kotaki T, Nakakita H, Kuwahara M (1993) Crowding inhibits pupation in Tribolium freemani (Coleoptera: Tenebrionidae): Effect of isolation and juvenile hormone analogues on development and pupation. Appl Entomol Zool 28: 43–52

    Google Scholar 

  • Lafon-Cazal M, Baehr JC (1988) Octopaminergic control of corpora allata activity in an insect. Experientia 44: 895–896

    Google Scholar 

  • Lange AB (1992) The neural and hormonal control of locust oviducts and accessory structures. Adv Comp Endoc 1: 109–116

    Google Scholar 

  • Lange AB, Nykamp DA (1996) Signal transduction pathways regulating the contraction of an insect visceral muscle. Arch Insect Biochem Physiol 33: 183–196

    Google Scholar 

  • Lange AB, Orchard I, Adams ME (1986) Peptidergic innervation of insect reproductive tissue: The association of proctolin with oviduct visceral musculature. J Comp Neurol 254: 279–286

    PubMed  Google Scholar 

  • Lange AB, Orchard I, Lam W (1987) Mode of action of proctolin on locust visceral muscle. Arch Insect Biochem Physiol 5: 285–295

    Google Scholar 

  • Long TF, Edgecomb RS, Murdock LL (1986) Effects of substituted phenylethylamines on blowfly feeding behavior. Comp Biochem Physiol 83C: 201–209

    Google Scholar 

  • Ma PWK, Roelofs WL, Jurenka RA (1996) Characterization of PBAN and PBAN-encoding gene neuropeptide in the central nervous system of the corn earworm moth, Helicoverpa zea. J Insect Physiol 42: 257–266

    Google Scholar 

  • Maqueira B, Chatwin H, Evans PD (2005) Identification and characterization of a novel family of Drosophila β-adrenergic-like octopamine G-protein coupled receptors. J Neurochem 94: 547–560

    PubMed  Google Scholar 

  • Martínez-Ramírez AC, Ferré J, Silva FJ (1992) Catecholamines in Drosophila melanogaster: DOPA and dopamine accumulation during development. Insect Biochem Molec Biol 22: 491–494

    Google Scholar 

  • Masler EP, Raina AK, Wagner RM, Kochansky JP (1994) Isolation and identification of a pheromonotropic neuropeptide from the brain-suboesophageal ganglion complex of Lymantria dispar: A new member of the PBAN family. Insect Biochem Molec Biol 24: 829–836

    Google Scholar 

  • Matsumoto S, Fonagy A, Kurihara M, Uchiumi K, Nagamine T, Chijimatsu M, Mitsui T (1992) Isolation and primary structure of a novel pheromonotropic neuropeptide structurally related to leucopyrokinin from the armyworm larvae, Pseudaletia separata. Biochem Biophys Res Comm 182: 534–539

    PubMed  Google Scholar 

  • McCaleb DC, Kumaran AK (1980) Control of juvenile hormone esterase activity in Galleria mellonella larvae. J Insect Physiol 26: 171–177

    Google Scholar 

  • Mellanby K (1954) Acclimatization and the thermal death point in insects. Nature 173: 582–583

    PubMed  Google Scholar 

  • Monastirioti M, Linn Jr CE, White K (1996) Characterization of Drosophila tyramine b-hydroxylase gene and isolation of mutant flies lacking octopamine. J Neurosci 16: 3900–3911

    PubMed  Google Scholar 

  • Muszynska-Pytel M, Cymborowski B (1978) The role of serotonin in regulation of the circadian rhythms of locomotor activity in the cricket (Acheta domesticus). I. Circadian variations in serotonin concentration in the brain and hemolymph. Comp Biochem Physiol 59C: 13–15

    Google Scholar 

  • Nagalakshmi VK, Applebaum SW, Kubli EC, Choffat Y, Rafaeli A (2004) The presence of Drosophila melanogaster Sex Peptide-like immunoreactivity in the accessory glands of male Helicoverpa armigera. J Insect Physiol 50: 241–248

    PubMed  Google Scholar 

  • Nagalakshmi VK, Applebaum SW, Azrielli A, Rafaeli A (2007) Female sex pheromone suppression and the fate of sex-peptide like peptides in mated moths of Helicoverpa armigera. Arch Insect Biochem Physiol 64: 142–155

    PubMed  Google Scholar 

  • Nakakita H (1982) Effect of larval density on pupation of Tribolium freemani Hinton (Coleoptera: Tenebrionidae). Appl Ent Zool 17: 269–276

    Google Scholar 

  • Nakakita H (1990) Hormonal control of inhibition of pupation caused by crowding larvae of Tribolium freemani Hinton (Coleoptera: Tenebrionidae). Appl Ent Zool 25: 347–353

    Google Scholar 

  • Nathanson J A (1985) Phenyliminoimidazolidines, characterization of a class of potent agonists of octopamine-sensitive adenylate cyclase and their use in understanding the pharmacology of octopamine receptors. Mol Pharmac 28: 254–268

    Google Scholar 

  • O’Dell K, Coulon JF, David JC, Papin C, Fuzeau-Braesch S, Jallon JM (1987) A mutation inactive produit une diminution marquee d’octopamine dans le cerveau des Drosophiles. C R Acad Sci Paris serie III 305: 199–202

    Google Scholar 

  • Orchard I (1982) Octopamine in insects: Neurotransmitter, neurohormone and neuromodulator. Can J Zool 60: 659–669

    Google Scholar 

  • Orchard I, Lange AB (1985) Evidence for octopaminergic modulation of an insect visceral muscle. J Neurobiol 16: 171–181

    PubMed  Google Scholar 

  • Orchard I, Lange AB (1987) The release of octopamine and proctolin from an insect visceral muscle: effects of high-potassium saline and neural stimulation. Brain Res 413: 251–258

    PubMed  Google Scholar 

  • Orchard I, Loughton BG, Webb RA (1981) Octopamine and short term hyperlipaemia in the locust. Gen Comp End 45: 175–180

    Google Scholar 

  • Orchard I, Ramirez JM, Lange AB (1993) A multifunctional role for octopamine in locust flight. Ann Rev Entomol 38: 227–249

    Google Scholar 

  • Pan C, Hirashima A, Kuwano E, Eto M (1997) Three-dimensional pharmacophore hypotheses for the locust neuronal octopamine receptor (OAR3): 1. Antagonists. J Molec Model 3: 455–463

    Google Scholar 

  • Pendleton RG, Robinson N, Roychowdhury R, Rasheed A, Hillman R (1996) Reproduction and development in Drosophila are dependent upon catecholamines. Life Sci 59: 2083–2091

    PubMed  Google Scholar 

  • Pipa RL (1976) Supernumerary instars produced by chilled wax moth larvae: endocrine mechanisms. J Insect Physiol 22: 1641–1647

    Google Scholar 

  • Quennedey A, Aribi N, Everaerts C, Delbecque JP (1994) Postembryonic development of Zophobas atratus Fab. (Coleoptera: Tenebrionidae) under crowded or isolated conditions and effects of juvenile hormone analogue applications. J Insect Physiol 41: 143–152

    Google Scholar 

  • Rachinsky A (1994) Octopamine and serotonin influence on corpora allata activity in honey bee (Apis mellifera) larvae. J Insect Physiol 40: 549–554

    Google Scholar 

  • Rafaeli A (2002) Neuroendocrine control of pheromone biosynthesis in moths. Int Rev Cytol 213: 49–91

    PubMed  Google Scholar 

  • Rafaeli A (2008) Pheromone Biosynthesis Activating Neuropeptide (PBAN): Regulatory Role and Mode of Action. Gen Comp Endoc, in press

    Google Scholar 

  • Rafaeli A, Gileadi C (1995) Modulation of the PBAN-induced pheromonotropic activity in Helicoverpa armigera. Insect Biochem Mol Biol 25: 827–834

    Google Scholar 

  • Rafaeli A, Gileadi C (1996) Down regulation of pheromone biosynthesis: cellular mechanisms of pheromonostatic responses. Insect Biochem Mol Biol 26: 797–807

    Google Scholar 

  • Rafaeli A, Jurenka RA (2003) PBAN regulation of pheromone biosynthesis in female moths. In: Blomquist GJ, Vogt RG (eds) Insect Pheromone Biochemistry and Molecular Biology. Elsevier Academic Press, Oxford, 107–136

    Google Scholar 

  • Rafaeli A, Gileadi C, Yongliang F, Cao M (1997) Physiological mechanisms of pheromonostatic responses: effects of adrenergic agonists and antagonists on moth pheromone biosynthesis. J Insect Physiol 43: 261–269

    PubMed  Google Scholar 

  • Rafaeli A, Gileadi C, Hirashima A (1999) Identification of novel synthetic octopamine receptor agonists which inhibit moth sex pheromone production. Pestic Biochem Physiol 65: 194–204

    Google Scholar 

  • Raina AK (1989) Male-induced termination of sex pheromone production and receptivity in mated females of Heliothis zea. J Insect Physiol 35: 821–826

    Google Scholar 

  • Raina AK (1993) Neuroendocrine control of sex pheromone biosynthesis in Lepidoptera. Ann Rev Entomol 38: 329–349

    Google Scholar 

  • Raina A, Kempe T (1990) A pentapeptide of the C-terminal sequence of PBAN with pheromonotropic activity. Insect Biochem 20: 849–851

    Google Scholar 

  • Raina AK, Jaffe H, Kempe TG, Keim P, Blacher RW, Fales HM, Riley CT, Klun JA, Ridgway RL, Hayes DK (1989) Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 244: 796–798

    PubMed  Google Scholar 

  • Ramaswamy SB, Mbata GN, Cohen NE, Moore A, Cox NM (1994) Pheromonotropic and pheromonostatic activity in moths. Arch Insect Biochem Physiol 25: 301–315

    PubMed  Google Scholar 

  • Rasmussen SGF, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VRP, Sanishvili R, Fischetti RF, Schertler GFX, Weis WI, Kobilka BK (2007) Crystal structure of the human ß2 adrenergic G-protein-coupled receptor. Nature 450: 383–387

    PubMed  Google Scholar 

  • Rauschenbach IY, Lukashina NS, Maksimovsky LF, Korochkin LI (1987) Stress-like reaction of Drosophila to adverse environmental factors. J Comp Physiol 157: 519–531

    Google Scholar 

  • Rauschenbach IY, Serova LI, Timochina IS, Chentsova NA, Shumnaja LV (1993) Analysis of differences in dopamine content between two lines of Drosophila virilis in response to heat stress. J Insect Physiol 39: 761–767

    Google Scholar 

  • Restifo LL, White K (1990) Molecular and genetic approaches to neurotransmitter and neuromodulator systems in Drosophila. Adv Insect Physiol 22: 115–219

    Google Scholar 

  • Robb S, Cheek TR, Hannan FL, Hall LM, Midgley JM, Evans PD (1994) Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J 13: 1325–1330

    PubMed  Google Scholar 

  • Roeder T (1990) High-affinity antagonists of the locust neuronal octopamine receptor. Eur J Pharmac 191: 221–224

    Google Scholar 

  • Roeder T (1992) A new octopamine receptor class in locust nervous tissue, the octopamine 3 (OA3) receptor. Life Sci 50: 21–28

    PubMed  Google Scholar 

  • Roeder T (1995) Pharmacology of the octopamine receptor from locust central nervous tissue (OAR3). Br J Pharmac 114: 210–216

    Google Scholar 

  • Roeder T, Gewecke M (1990) Octopamine receptors in locust nervous tissue. Biochem Pharm 39: 1793–1797

    PubMed  Google Scholar 

  • Robertson HA, Juorio AV (1976) Octopamine and some related noncatecholic amines in invertebrate nervous systems. Int Rev Neurobiol 19: 173–224

    PubMed  Google Scholar 

  • Rountree DB, Bollenbacher WE (1986) The release of the prothoracicotropic hormone in the tobacco hornworm, Manduca sexta, is contolled intrinsically by juvenile hormone. J Exp Biol 120: 41–58

    PubMed  Google Scholar 

  • Rubenstein, LA, Lanzara RG (1998) Activation of G protein-coupled receptors entails cysteine modulation of agonist binding. J Mol Struct (Theochem) 430: 57–71

    Google Scholar 

  • Sakurai S, Kaya M, Satake S (1998) Hemolymph ecdysteroid titer and ecdysteroid-dependent developmental events in the last-larval stadium of the silkworm, Bombyx mori: role of low ecdysteroid titer in larval–pupal metamorphosis and a reappraisal of the head critical period. J Insect Physiol 44: 867–881

    PubMed  Google Scholar 

  • Saudou F, Amlaiky N, Plassat J-L, Borrelli E, Hen R (1990) Cloning and characterization of a Drosophila tyramine receptor. EMBO Journal 9: 3611–3617

    PubMed  Google Scholar 

  • Smith KA, Rex EB, Komuniecki RW (2007) Are Caenorhabditis elegans receptors useful targets for drug discovery: Pharmacological comparison of tyramine receptors with high identity from C. elegans (TYRA-2) and Brugia malayi (Bm4). Molec Biochem Parasitol 154: 52–61

    Google Scholar 

  • Soroker V, Rafaeli A (1989) In vitro hormonal stimulation of [14C]-acetate incorporation by Heliothis armigera pheromone glands. Insect Biochem 19: 1–5

    Google Scholar 

  • Stern PS, Yu L, Choi MY, Jurenka RA, Becker L, Rafaeli A (2007) Molecular modeling of the binding of pheromone biosynthesis-activating neuropeptide (PBAN) to its receptor. J Insect Physiol 53: 803–818

    Google Scholar 

  • Tanaka S, Takeda N (1997) Biogenic monoamines in the brain and the corpus cardiacum between albino and normal strains of the migratory locust, Locusta migratoria. Comp Biochem Physiol 117C: 221–227

    Google Scholar 

  • Thompson CS, Yagi KJ, Chen ZF, Tobe SS (1990) The effects of octopamine on juvenile hormone biosynthesis, electrophysiology, and cAMP content of the corpora allata of the cockroach Diploptera punctata. J Comp Physiol 160B: 241–249

    Google Scholar 

  • Tschinkel WR (1978) Dispersal behaviour of the larval tenebrionid beetle Zophobas rugipes. Physiol Zool 51: 300–313

    Google Scholar 

  • Tschinkel WR (1981) Larval dispersal and cannibalism in a natural population of Zophobas atratus (Coleoptera: Tenebrionidae). Anim Behav 29: 990–996

    Google Scholar 

  • Tschinkel WR, Willson CD (1971) Inhibition of pupation due to crowding in some Tenebrionid beetles. J Exp Zool 176: 137–146

    Google Scholar 

  • Tunnicliff G, Rick JT, Connolly K (1969) Locomotor activity in Drosophila. V. A comparative biochemical study of selectively bred populations. Comp Biochem Physiol 29: 1239–1245

    Google Scholar 

  • Vanden Broeck J, Vulsteke V, Huybrechts R, De Loof A (1995) Characterization of a cloned locust tyramine receptor cDNA by functional expression in permanently transformed Drosophila S2 cells. J Neurochem 64: 2387–2395

    PubMed  Google Scholar 

  • Watson DG, Zhou P, Midgley JV, Milligan CD, Kaiser K (1993) The determination of biogenic amines in four strains of the fruit fly Drosophila melanogaster. J Pharmac Biomed Anal 11: 1145–1149

    Google Scholar 

  • Woodring J, Hoffmann KH (1994) The effects of octopamine, dopamine and setrotonin on juvenile hormone synthesis, in vitro, in the cricket, Gryllus bimaculatus. J Insect Physiol 40: 797–802

    Google Scholar 

  • Woodring JP, Meier OW, Rose R (1988) Effect of development, photoperiod, and stress on octopamine levels in the house cricket, Acheta domesticus. J Insect Physiol 34: 759–765

    Google Scholar 

  • Wright TRF (1987) The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv Genet 24: 127–222

    PubMed  Google Scholar 

  • Yovell Y, Dudai Y (1987) Possible involvement of adenylate cyclase in learning and short-term memory. Experimental data and some theoretical considerations. Israel J Med Sci 23: 49–60

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Toshio Ichikawa in the Faculty of Science, Kyushu University for his valuable advice throughout this work and allowing us to use his HPLC systems. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Hirashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hirashima, A. (2009). Tyramine and Octopamine Receptors as a Source of Biorational Insecticides. In: Ishaaya, I., Horowitz, A. (eds) Biorational Control of Arthropod Pests. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2316-2_4

Download citation

Publish with us

Policies and ethics