Skip to main content

The Role of Nonlinear Relapse on Contagion Amongst Drinking Communities

  • Chapter

Abstract

Relapse, the recurrence of a disorder following a symptomatic remission, is a frequent outcome in substance abuse disorders. Some of our prior results suggested that relapse, in the context of abusive drinking, is likely an “unbeatable” force as long as recovered individuals continue to interact in the environments that lead to and/or reinforce the persistence of abusive drinking behaviors. Our earlier results were obtained via a deterministic model that ignored differences between individuals, that is, in a rather simple “social” setting. In this paper, we address the role of relapse on drinking dynamics but use models that incorporate the role of “chance”, or a high degree of “social” heterogeneity, or both. Our focus is primarily on situations where relapse rates are high. We first use a Markov chain model to simulate the effect of relapse on drinking dynamics. These simulations reinforce the conclusions obtained before, with the usual caveats that arise when the outcomes of deterministic and stochastic models are compared. However, the simulation results generated from stochastic realizations of an “equivalent” drinking process in populations “living” in small world networks, parameterized via a disorder parameter p, show that there is no social structure within this family capable of reducing the impact of high relapse rates on drinking prevalence, even if we drastically limit the interactions between individuals (p ≈ 0). Social structure does not matter when it comes to reducing abusive drinking if treatment and education efforts are ineffective. These results support earlier mathematical work on the dynamics of eating disorders and on the spread of the use of illicit drugs. We conclude that the systematic removal of individuals from high risk environments, or the development of programs that limit access or reduce the residence times in such environments (or both approaches combined) may reduce the levels of alcohol abuse.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, L. J. S. (2003) An Introduction to Stochastic Processes with Applications to Biology. Pearson, Upper Saddle River.

    Google Scholar 

  2. Allen, L. J. S., van den Driessche, P. (2006) Stochastic epidemic models with a backward bifurcation. Math. Biosci. Eng. 3:445–458.

    MATH  MathSciNet  Google Scholar 

  3. Anderson,R., May, R. (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford.

    Google Scholar 

  4. Barabasi, A. L., Albert, R. (1999) Emergence of scaling in random networks. Science 286(5439): 509–512.

    Article  MathSciNet  Google Scholar 

  5. Bettencourt, L. M. A., Cintrón-Arias, A., Kaiser, D. I., Castillo-Chávez, C. (2006) The power of a good idea: quantitative modeling of the spread of ideas from epidemiological models. Physica A 364:513–536.

    Article  Google Scholar 

  6. Blythe, S., Castillo-Chavez, C. (1990) Scaling law of sexual activity, Nature, 344:202.

    Article  Google Scholar 

  7. Blythe, S., Castillo-Chavez, C. (1991) Palmer, P.,Cheng, M.: Towards a unified theory of mixing and pair formation. Math. Biosci. 107:379–405.

    Article  MATH  Google Scholar 

  8. Blythe, S., Busenberg, S., Castillo-Chavez, C. (1995) Affinity and paired-event probability. Math. Biosci. 128:265–284.

    Article  MATH  MathSciNet  Google Scholar 

  9. Bollobás, B. (2001) Random Graphs. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  10. Brauer, F., Castillo-Chávez, C. (2001) Mathematical Models in Population Biology and Epidemiology. Springer-Verlag, New York.

    MATH  Google Scholar 

  11. Braun, R. J., Wilson, R. A., Pelesko, J. A., Buchanan, J. R. (2006) Applications of small-world network theory in alcohol epidemiology. J. Stud. Alcohol 67: 591–599.

    Google Scholar 

  12. Busenberg, S., Castillo-Chavez, C. (1989) Interaction, pair formation and force of infection terms in sexually transmitted diseases. In: Castillo-Chavez, C. (ed.) Mathematical and Statistical Approaches to AIDS Epidemiology. Lecture Notes Biomathematics, Vol. 83, pp. 280–300. Springer-Verlag, Berlin.

    Google Scholar 

  13. Busenberg, S., Castillo-Chavez, C. (1991) A general solution of the problem of mixing of subpopulation, and its application to risk- and age-structured epidemic models. IMA J. Math. Appl. Med. Biol. 8:1–29.

    Article  MATH  MathSciNet  Google Scholar 

  14. Castillo-Chávez, C. (ed.) (1989) Mathematical and Statistical Approaches to AIDS Epidemiology. Lecture Notes in Biomathematics, Vol. 83. Springer-Verlag, Berlin.

    Google Scholar 

  15. Castillo-Chavez, C., Huang, W., Li, J. (1996) Competitive exclusion in gonorrhea models and other sexually-transmitted diseases. SIAM J. Appl. Math. 56:494–508.

    Article  MATH  MathSciNet  Google Scholar 

  16. Castillo-Chavez, C., Song, B., Zhang, J. (2003) An epidemic model with virtual mass transportation: the case of smallpox in a large city. In: Banks, H.T., Castillo-Chavez, C. (eds.) Bioterrorism: Mathematical Modeling Applications in Homeland Security. Frontiers in Applied Mathematics, Vol. 28, pp. 173–198. Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  17. Centers for Disease Control and Prevention (2008) Alcohol and Public Health. http://www.cdc.gov/alcohol/index.htm. Cited 29 Apr 2008.

  18. Centers for Disease Control and Prevention (2008) Frequently Asked Questions: What does moderate drinking mean? http://www.cdc.gov/alcohol/faqs.htm#6. Cited 11 May 2008.

  19. Centers for Disease Control and Prevention (2008) Frequently Asked Questions: What do yo mean by heavy drinking? http://www.cdc.gov/alcohol/faqs.htm#10. Cited 11 May 2008.

  20. Chowell, G., Fenimore, P. W., Castillo-Garsow, M. A., Castillo-Chavez, C. (2003) SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J. Theor. Biol. 224:1–8.

    Article  MathSciNet  Google Scholar 

  21. Chowell, G., Castillo-Chávez, C. (2003) Worst-case scenarios and epidemics. In: Banks, H.T., Castillo-Chavez, C. (eds.) Bioterrorism: Mathematical Modeling Applications in Homeland Security. Frontiers in Applied Mathematics, Vol. 28, pp. 35–53. Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  22. Chowell, G., Ammon, C. E., Hengartner, N. W., Hyman, J. M. (2006) Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. J. Theor. Biol. 241:193–204.

    Article  MathSciNet  Google Scholar 

  23. Chowell, G., Cintrón-Arias, A., Del Valle, S., Sánchez, F., Song, B., Hyman, J. M., Hethcote, H. W., Castillo-Chávez, C. (2006b) Mathematical applications associated with the deliberate release of infectious agents. In: Gummel, A., Castillo-Chávez, C., Clemence, D.P., Mickens, R.E. (eds.) Modeling the Dynamics of Human Disease: Emerging Paradigms and Challenges. Contemporary Mathematics Series, Vol. 410, pp. 51–72. American Mathematical Society, Providence.

    Google Scholar 

  24. College Drinking (2008). http://www.collegedrinkingprevention.gov/. Cited 11 May 2008.

  25. Daido, K. (2004) Risk-averse agents with peer pressure. Appl. Econ. Lett. 11: 383–386.

    Article  Google Scholar 

  26. Gladwell, M. (1996) The Tipping Point. New Yorker 72:32–39.

    Google Scholar 

  27. González, B., Huerta-Sánchez, E., Ortiz-Nieves, A., Vázquez-Alvarez, T., Kribs-Zaleta, C. (2003) Am I too fat? Bulimia as an epidemic. J. Math. Psychol. 47:515–526.

    Article  MATH  Google Scholar 

  28. Grabowski, A., Kosinski, R. A. (2005) The SIS model of epidemic spreading in a hierarchical social network. Acta Phys. Pol. B 36:1579–1593.

    Google Scholar 

  29. Hethcote, H., Yorke, J. (1984) Gonorrhea Transmission Dynamics and Control. Lecture Notes in Biomathematics, Vol. 56. Springer-Verlag, Berlin.

    Google Scholar 

  30. Hethcote, H. (2000) The mathematics of infectious diseases. SIAM Rev. 42:599–653.

    Article  MATH  MathSciNet  Google Scholar 

  31. Hsu, S. (1993) Some Theories, Estimation Methods and Applications of Marriage Functions in Demography and Epidemiology. Dissertation, Cornell University.

    Google Scholar 

  32. Hsu, S., Castillo-Chavez, C. (1994) Parameter estimation in non-closed social networks related to the dynamics of sexually-transmitted diseases. In: Kaplan, E.H., Brandeau, M.L. (eds.) Modeling the AIDS Epidemic: Planning, Policy, and Prediction, pp. 533–559. Raven, New York.

    Google Scholar 

  33. Hsu, S., Castillo-Chavez, C. (1996) Completion of mixing matrices for nonclosed social networks. In: Lakshmikantham, V.(ed.) Proceedings of the First World Congress of Nonlinear Analysis, pp. 3163–3173. Verlag Walter de Gruyter, Berlin.

    Google Scholar 

  34. Hyman, J. M., LaForce, T. (2003) Modeling spread of inuenza among cities. In: Banks, H.T., Castillo-Chavez, C. (eds.) Bioterrorism: Mathematical Modeling Applications in Homeland Security. Frontiers in Applied Mathematics, Vol. 28, pp. 211–236. Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  35. Leadership to Keep Children Alcohol Free (2008). http://www.alcoholfreechildren.org/. Cited 11 May 2008.

  36. Liljeros, F., Edling, C. R., Nunes Amaral, L. A., Stanley, H. E., Aberg, Y. (2001) The web of human sexual contacts. Nature 411:907–908.

    Article  Google Scholar 

  37. Mackintosh, D. R., Stewart, G. T. (1979) A mathematical model of a heroin epidemic: implications for control policies. J. Epidemiol. Commun. H. 33:299–304.

    Article  Google Scholar 

  38. May, R. M., Lloyd, A. L. (2001) Infection dynamics on scale-free networks. Phys. Rev. E. 64:066112.

    Article  Google Scholar 

  39. Meyers, L. A., Pourbohloul, B., Newman, M. E. J., Skowronski, D. M., Brunham, R. C. (2005) Network theory and SARS: Predicting outbreak diversity. J. Theor. Biol. 232: 71–78.

    Article  MathSciNet  Google Scholar 

  40. Miller, W. R., Walters, S. T., Bennett, M. E. (2001) How effective is alcoholism treatment in the United States? J. Stud. Alcohol. 62:211–220.

    Google Scholar 

  41. Milgram, S. (1967) The small world problem. Psychol. Today 1:60–67.

    Google Scholar 

  42. Mubayi, A., Greenwood, P., Castillo-Chavez, C., Gruenewald, P., Gorman, D. M. (2009) The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments. Socio. Econ. Plan. Sci. (in press).

    Google Scholar 

  43. National Institute of Alcohol Abuse and Alcoholism (2008) Five Year Strategic Plan. http://pubs.niaaa.nih.gov/publications/StrategicPlan/NIAAASTRATEGICPLAN.htm. Cited 29 Apr 2008.

  44. National Institute of Alcohol Abuse and Alcoholism (2008) Frequently Asked Questions for the General Public. http://www.niaaa.nih.gov/FAQs/General-English/default.htm. Cited Apr 29 2008.

  45. Newman, M. E. J. (2003) The structure and function of complex networks. SIAM Rev. 45: 167–256.

    Article  MATH  MathSciNet  Google Scholar 

  46. Newman, M. E. J., Barabasi, A. L., Watts, D. J. (2006) The Structure and Dynamics of Networks. Princeton University Press, Princeton.

    MATH  Google Scholar 

  47. Pastor-Satorras, R., Vespignani, A. (2001) Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86:3200.

    Article  Google Scholar 

  48. Patten, S. B., Arboleda-Florez, J. A. (2004) Epidemic theory and group violence. Soc. Psych. Psych. Epid. 39:853–856.

    Article  Google Scholar 

  49. Porter, M. A., Mucha, P. J., Newman, M. E. J., Warmbrand, C. M. (2005) A network analysis of committees in the U.S. house of representatives. P. Natl. Acad. Sci. USA, 102:7057–7062.

    Article  Google Scholar 

  50. Renshaw, E. (1991) Modelling Biological Populations in Space and Time. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  51. Sánchez, F. (2006) Studies in Epidemiology and Social Dynamics. Dissertation, Cornell University.

    Google Scholar 

  52. Sánchez, F., Wang, X., Castillo-Chavez, C., Gorman, D. M., Gruenewald, P. J. (2007) Drinking as an epidemic—a simple mathematical model with recovery and relapse. In: Witkiewitz, K. A., Marlatt, G. A. (eds.) Therapist’s Guide to Evidence-Based Relapse Prevention: Practical Resources for the Mental Health Professional.Academic, Burlington, 353–368.

    Google Scholar 

  53. Song, B., Castillo-Garsow, M., Castillo-Chávez, C., Ríios Soto, K., Mejran, M., Henso, L. (2006) Raves, Clubs, and Ecstasy: The Impact of Peer Pressure. Math. Biosci. Eng. 3: 249–266.

    MATH  MathSciNet  Google Scholar 

  54. Wasserman, S., Faust, K. (1994) Social network analysis: methods and applications. Cambridge University Press, Cambridge.

    Google Scholar 

  55. Watts, D. J., Strogatz, S. H. (1998) Collective dynamics of ‘ small-world’ networks. Nature 383:440–442.

    Article  Google Scholar 

  56. Weitzman, E. R., Folkman, A., Folkman, K. L., Weschler, H. (2003) The relationship of alcohol outlet density to heavy and frequent drinking and drinking-related problems among college students at eight universities. Health Place 9:1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cintrón-Arias, A., Sánchez, F., Wang, X., Castillo-Chavez, C., Gorman, D.M., Gruenewald, P.J. (2009). The Role of Nonlinear Relapse on Contagion Amongst Drinking Communities. In: Chowell, G., Hyman, J.M., Bettencourt, L.M.A., Castillo-Chavez, C. (eds) Mathematical and Statistical Estimation Approaches in Epidemiology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2313-1_14

Download citation

Publish with us

Policies and ethics