Skip to main content

The Basic Reproduction Number of Infectious Diseases: Computation and Estimation Using Compartmental Epidemic Models

  • Chapter
Mathematical and Statistical Estimation Approaches in Epidemiology

The basic reproduction number (R0) is a central quantity in epidemiology as it measures the transmission potential of infectious diseases. In this chapter we review the basic theory of the spread of infectious diseases using simple compartmental models based on ordinary differential equations including the simple Kermack-McKendrick epidemic model, SIR (susceptible-infectious-removed) models with demographics, the SIS (susceptible-infectious-susceptible) model, backward bifurcations, endemic equilibria, and the analytical derivation of R0 using the next-generation approach. This theory is followed by simple methodology for the estimation of R0 with its corresponding uncertainty from epidemic time series data. The 1918–1919 influenza pandemic in Winnipeg, Canada, and the 1968 influenza pandemic in US cities are used for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morbidity and Mortality Weekly Reports (MMWR). 121 US cities mortality surveillance (1968–1971) [http://www.cdc.gov/mmwr/]

  2. Anderson RM and May RM (1982) Directly transmitted infectious diseases: Control by vaccination. Science 215:1053–1060.

    Article  MathSciNet  Google Scholar 

  3. Anderson RM and May RM (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford.

    Google Scholar 

  4. Andreasen V, Viboud C and Simonsen L (2008) Epidemiologic characterization of the summer wave of the 1918 influenza pandemic in Copenhagen: Implications for pandemic control strategies. J. Infect. Dis. 197:270–278.

    Article  Google Scholar 

  5. Arino J, Brauer F, van den Driessche P, Watmough J and Wu J (2007) A final size relation for epidemic models. Math. Biosc. Eng. 4:159–176.

    MATH  Google Scholar 

  6. Becker NG (1989) Analysis of Infectious Disease Data. Chapman and Hall, New York.

    Google Scholar 

  7. Berman A and Plemmons RJ (1994) Nonnegative Matrices in the Mathematical Sciences, Classics in Applied Mathematics 9, SIAM, Philadelphia.

    Google Scholar 

  8. Bickel P and Doksum KA (1977) Mathematical Statistics. Holden-Day, Oakland, California.

    MATH  Google Scholar 

  9. Blower SM and Mclean AR (1994) Prophylactic vaccines, risk behavior change, and the probability of eradicating HIV in San Francisco. Science 265: 1451.

    Article  Google Scholar 

  10. Brauer F and Castillo-Chavez C (2000) Mathematical Models in Population Biology and Epidemiology. Springer-Verlag, New York.

    Google Scholar 

  11. Brauer F (2004) Backward bifurcations in simple vaccination models. J. Math. Anal. Appl. 298:418–431.

    Article  MATH  MathSciNet  Google Scholar 

  12. Brauer F (2005) The Kermack-McKendrick model revisited. Math. Biosc. 198: 119–131.

    Article  MATH  MathSciNet  Google Scholar 

  13. Brauer F (2008) Compartmental models in epidemiology. In: Brauer F, van den Driessche P, and Wu J (eds) Mathematical Epidemiology, Lecture Notes in Mathematics, Mathematical Biosciences Subseries 1945 Springer-Verlag, Berlin-Heidelberg: 19–79.

    Google Scholar 

  14. Cadham MFT (1919) The use of a vaccine in the recent epidemic of influenza. Can. Med. Assoc. J. 9:519–527.

    Google Scholar 

  15. Castillo-Chavez C and Thieme HR (1993) Asymptotically autonomous epidemic models. In: Arino O, Axelrod D, Kimmel M, Langlais M (eds) Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1, Theory of Epidemics,, Wuerz, Winnipeg: 33–50.

    Google Scholar 

  16. Castillo-Chavez C, Feng Z and Huang W (2002) On the computation of R0 and its role on global stability, in: Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction, IMA Volume 125. Springer-Veralg, Berlin pp. 229-250.

    Google Scholar 

  17. Carrat F, Vergu E, Ferguson NM, et al. (2008) Time lines of infection and disease in human influenza: A review of volunteer challenge studies. Am. J. Epidemiol. 167(7): 775–785.

    Article  Google Scholar 

  18. Cauchemez S, Boelle PY, Thomas G and Valleron AJ (2006) Estimating in real time the efficacy of measures to control emerging communicable diseases. Am. J. Epidemiol. 164:591–597.

    Article  Google Scholar 

  19. Chowell G, Ammon CE, Hengartner NW and Hyman JM (2006) Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. J. Theor. Biol. 241:193–204.

    Article  MathSciNet  Google Scholar 

  20. Chowell G, Nishiura H and Bettencourt LM (2007) Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J. R. Soc. Interface 4:155–166.

    Article  Google Scholar 

  21. Chowell G, Miller MA and Viboud C (2008) Seasonal influenza in the United States, France, and Australia: Transmission and prospects for control. Epidemiol. Infect. 136:852–64.

    Google Scholar 

  22. Chowell G, Ammon CE, Hengartner NW and Hyman JM (2007) Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Math. Biosci. Eng. 4:457–470.

    MATH  Google Scholar 

  23. Chowell G, Bettencourt LMA, Johnson N, Alonso WJ and Viboud C (2008) The 1918–1919 influenza pandemic in England and Wales: Spatial patterns in transmissibility and mortality impact. Proc. R. Soc. B 275:501–509.

    Article  Google Scholar 

  24. Chowell G, Bettencourt LMA, Johnson NPAS, Alonso WJ and Viboud C (2008) The 1918–1919 influenza pandemic in England and Wales: Spatial patterns in transmissibility and mortality impact. Proc. Biol. Sci. 275:501–9.

    Article  Google Scholar 

  25. Chowell G and Nishiura H (2008) Quantifying the transmission potential of pandemic influenza. Phys. Life Rev. 5, 50–77.

    Article  Google Scholar 

  26. Cunha BA (2004) Influenza: Historical aspects of epidemics and pandemics. Infect. Dis. Clin. North Am. 18:141–155.

    Article  Google Scholar 

  27. Davidian M and Giltinan DM (1995) Nonlinear Models for Repeated Measurement data. Monographs on Statistics and Applied Probability 62. Chapman and Hall, New York.

    Google Scholar 

  28. De Jong MC, Diekmann O and Heesterbeek JA (1994) The computation of R0 for discrete-time epidemic models with dynamic heterogeneity. Math. Biosci.119:97–114.

    Article  MATH  Google Scholar 

  29. Diekmann O, Heesterbeek JAP and Metz JAJ (1990) On the definition and the computation of the basic reproductive ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28:365–382.

    Article  MATH  MathSciNet  Google Scholar 

  30. Diekmann O and Heesterbeek JAP (2000) Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. John Wiley and Sons, New York.

    Google Scholar 

  31. Dietz K (1988) Mathematical models for transmission and control of malaria. in: Malaria, Principles and Practice of Malariology, eds W.H. Wernsdorfer and I. McGregor. Churchill Livingstone, Edinburgh. pp.1091–1133.

    Google Scholar 

  32. Dietz K (1993) The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 2:23–41.

    Article  Google Scholar 

  33. Dushoff J, Huang W and Castillo-Chavez C (1998) Backwards bifurcations and catastrophe in simple models of total diseases. J. Math. Biol. 36:227–248.

    Article  MATH  MathSciNet  Google Scholar 

  34. Efron B and Tibshirani RJ (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci.1:54–75.

    Article  MathSciNet  Google Scholar 

  35. Ferguson NM, Donnelly CA and Anderson RM (2001) Transmission intensity and impact of control policies on the foot and mouth epidemc in Great Britain. Nature 413:542–548.

    Article  Google Scholar 

  36. Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S and Burke DS (2005) Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437:209–214.

    Article  Google Scholar 

  37. Fine PE (1993) Herd immunity: History, theory, practice. Epidemiol. Rev. 15:265–302.

    Google Scholar 

  38. Gani R, Hughes H, Fleming DM, Griffin T, Medlock J and Leach S (2005) Potential impact of antiviral drug use during influenza pandemic. Emerg. Infect. Dis.11:1355–1362.

    Google Scholar 

  39. Hadeler KP and Castillo-Chavez C (1995) A core group model for disease transmission. Math Biosc. 128:41–55.

    Article  MATH  Google Scholar 

  40. Hadeler KP and van den Driessche P (1997) Backward bifurcation in epidemic control. Math. Biosc. 146:15–35.

    Article  MATH  Google Scholar 

  41. Halloran ME, Haber M, Longini IM and Struchiner CJ (1991) Direct and indirect effects in vaccine efficacy and effectiveness. Am. J. Epidemiol.133:323–331.

    Google Scholar 

  42. Heesterbeek JAP (2002) A brief history of R0 and a recipe for its calculation. Acta Biotheor. 50:189–204.

    Article  Google Scholar 

  43. Heffernan JM, Smith RJ and Wahl LM (2005) Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2:281–293.

    Article  Google Scholar 

  44. Heffernan JM and Wahl LM (2006) Improving estimates of the basic reproductive ratio: using both the mean and the dispersal of transition times. Theor. Popul. Biol.70:135–145.

    Article  MATH  Google Scholar 

  45. Hethcote HW, Stech HW and van den Driessche P (1981) Periodicity and stability in epidemic models: a survey. In: Busenberg S and Cooke KL (eds.) Differential Equations and Applications in Ecology, Epidemics and Population Problems, Springer-Verlag, Berlin-Heidelberg: 65–82.

    Google Scholar 

  46. Hethcote HW and Levin SA (1989) Periodicity in epidemic models. In : Levin SA, Hallam TG, Gross LG (eds) Applied Mathematical Ecology. Biomathematics 18, Springer-Verlag,Berlin-Heidelberg-New York: 193–211.

    Google Scholar 

  47. Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev. 42:599–653.

    Article  MATH  MathSciNet  Google Scholar 

  48. Hyman JM and Li J (2000) An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations. Math. Biosci.167:65–86.

    Article  MATH  Google Scholar 

  49. Johnson NP and Mueller J (2002) Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med.76:105–115.

    Article  Google Scholar 

  50. Jones EW (2005) Co-operarion in all human endeavour: Quarantine and immigrant disease vectors in the 1918–1919 influenza pandemic in winnipeg. Can. Bull. Med. Hist. 22:57–82.

    Google Scholar 

  51. Keeling MJ and Grenfell BT (2000) Individual-based perspectives on R(0). J. Theor. Biol. 203:51–61.

    Article  Google Scholar 

  52. Keeling MJ and Eames KT (2005) Networks and epidemic models. J. R. Soc. Interface 2:295–307.

    Article  Google Scholar 

  53. Kendall DG (1956) Deterministic and stochastic epidemics in closed populations. in: Third Berkeley Symposium on Mathematical Statistics and Probability 4, ed P. Newman. University of California Press, New York. pp. 149–165.

    Google Scholar 

  54. Kermack WO and McKendrick AG (1927) Contributions to the mathematical theory of epidemics – I. Proc. R. Soc. A115:700–721 (reprinted in Bulletin of Mathematical Biology 53 (1991) 33–55).

    Google Scholar 

  55. Kermack WO and McKendrick AG (1932) Contributions to the mathematical theory of epidemics, part. II. Proc. Roy. Soc. London 138:55–83.

    Article  MATH  Google Scholar 

  56. Kermack WO and McKendrick AG (1933) Contributions to the mathematical theory of epidemics, part. III. Proc. Roy. Soc. London 141:94–112.

    Article  MATH  Google Scholar 

  57. Kribs-Zaleta CM and Velasco-Hernandez JX (2000) A simple vaccination model with multiple endemic states. Math Biosc. 164:183–201.

    Article  MATH  Google Scholar 

  58. Lipsitch M, Cohen T, Cooper B, Robins JM, Ma S, James L, Gopalakrishna G, Chew SK, Tan CC, Samore MH, Fisman D and Murray M (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science 300:1966–1970

    Article  Google Scholar 

  59. Lloyd AL (2001) Destabilization of epidemic models with the inclusion of realistic distributions of infectious periods. Proc. R. Soc. London B 268:985–993.

    Article  Google Scholar 

  60. Lloyd AL (2001) Realistic distributions of infectious periods in epidemic models: Changing patterns of persistence and dynamics. Theor. Popul. Biol. 60:59–71.

    Article  Google Scholar 

  61. Ma J and Earn DJ (2006) Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol.68:679–702.

    Article  MathSciNet  Google Scholar 

  62. MacKellar L (2007) Pandemic influenza: A review. Popul. Dev. Rev. 33:429–451.

    Article  Google Scholar 

  63. Markel H, Lipman HB, Navarro JA, Sloan A, Michalsen JR, Stern AM and Cetron MS (2007) Nonpharmaceutical interventions implemented by US cities during the 1918–1919 influenza pandemic. JAMA 298:644–654.

    Article  Google Scholar 

  64. Markus L (1956) Asymptotically autonomous differential systems. In: Lefschetz S (ed) Contributions to the Theory of Nonlinear Oscillations III. Annals of Mathematics Studies 36, Princeton University Press, Princeton, N.J.: 17–29.

    Google Scholar 

  65. Massad E, Burattini MN, Coutinho FA and Lopez LF (2007) The 1918 influenza A epidemic in the city of Sao Paulo, Brazil. Med. Hypotheses 68:442–445.

    Article  Google Scholar 

  66. Mills CE, Robins JM and Lipsitch M (2004) Transmissibility of 1918 pandemic influenza. Nature 432:904–906.

    Article  Google Scholar 

  67. Murray CJ, Lopez AD, Chin B, Feehan D and Hill KH (2006) Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918–1920 pandemic: A quantitative analysis. Lancet 368:2211–2218.

    Article  Google Scholar 

  68. Nishiura H, Dietz K and Eichner M (2006) The earliest notes on the reproduction number in relation to herd immunity: Theophil Lotz and smallpox vaccination. J. Theor. Biol. 241:964–967.

    Google Scholar 

  69. Nishiura H (2006) Mathematical and statistical analyses of the spread of dengue.Dengue Bull.30:51–67.

    Google Scholar 

  70. Nishiura H (2007) Time variations in the transmissibility of pandemic influenza in Prussia, Germany, from 1918 to 1919. Theor. Biol. Med. Model. 4:20.

    Article  Google Scholar 

  71. Nishiura H and Inaba H (2007) Discussion: Emergence of the concept of the basic reproduction number from mathematical demography. J. Theor. Biol.244:357–364.

    Article  Google Scholar 

  72. Patterson KD and Pyle GF (1991) The geography and mortality of the 1918 influenza pandemic. Bull. Hist. Med. 65:4–21.

    Google Scholar 

  73. Roberts MG and Heesterbeek JA (2007) Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection. J. Math. Biol. 55:803–816.

    Article  MATH  MathSciNet  Google Scholar 

  74. Ross R (1911) The Prevention of Malaria. John Murray, London.

    Google Scholar 

  75. Rvachev LA, Longini IM (1985) A mathematical model for the global spread of influenza. Math. Biosci. 75:322.

    MathSciNet  Google Scholar 

  76. Sattenspiel L and Herring DA (2003) Simulating the effect of quarantine on the spread of the 1918–1919 flu in central Canada. Bull. Math. Biol. 65:1–26.

    Article  Google Scholar 

  77. Sertsou G, Wilson N, Baker M, Nelson P and Roberts MG (2006) Key transmission parameters of an institutional outbreak during the 1918 influenza pandemic estimated by mathematical modelling. Theor. Biol. Med. Model. 3:38.

    Article  Google Scholar 

  78. Smith CE (1964) Factors in the transmission of virus infections from animal to man. Sci. Basis Med. Annu. Rev. 125–150.

    Google Scholar 

  79. Sydenstricker E (1921) Variations in case fatality during the influenza epidemic of 1918. Public Health Rep. 36:2201–2211.

    Google Scholar 

  80. Thieme HR and Castillo-Chavez C (1989) How may infection-age dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math. 53:1447–1479.

    Article  MathSciNet  Google Scholar 

  81. Thieme HR (1994) Asymptotically autonomous differential equations in the plane. Rocky Mountain J. Math. 24:351–380.

    Article  MATH  MathSciNet  Google Scholar 

  82. van den Driessche P and Watmough J (2002) Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math. Biosc. 180:29–48.

    Article  MATH  Google Scholar 

  83. Viboud C, Tam T, Fleming D, Handel A, Miller MA and Simonsen L (2006) Transmissibility and mortality impact of epidemic and pandemic influenza, with emphasis on the unusually deadly 1951 epidemic. Vaccine 24:6701–6707.

    Article  Google Scholar 

  84. Vynnycky E, Trindall A and Mangtani P (2007) Estimates of the reproduction numbers of Spanish influenza using morbidity data. Int. J. Epidemiol.36:881–889.

    Article  Google Scholar 

  85. Wallinga J and Teunis P (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol.160:509–516.

    Article  Google Scholar 

  86. Wallinga J, Lipsitch M (2007) How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. Roy. Soc. B 274:599–604.

    Article  Google Scholar 

  87. Wearing HJ, Rohani P, and Keeling MJ (2005) Appropriate models for the management of infectious diseases. PLOS Med. 2:621–627.

    Google Scholar 

  88. White LC and Pagano MA (2007) likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic. Stat. Med. in press (doi: 10.1002/sim.3136).

    Google Scholar 

  89. Yan P (2008) Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks. J. Theor. Biol. 251:238–252.

    Article  Google Scholar 

  90. Yang CK and Brauer F (2008) Calculation of R0 for age-of-infection models. Math. Biosci. Eng. 5:585–599.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chowell, G., Brauer, F. (2009). The Basic Reproduction Number of Infectious Diseases: Computation and Estimation Using Compartmental Epidemic Models. In: Chowell, G., Hyman, J.M., Bettencourt, L.M.A., Castillo-Chavez, C. (eds) Mathematical and Statistical Estimation Approaches in Epidemiology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2313-1_1

Download citation

Publish with us

Policies and ethics