Skip to main content

A Comparison Between 3D OSEM and FBP Image Reconstruction Algorithms in SPECT

  • Chapter
Advances in Electrical Engineering and Computational Science

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 39))

In this chapter, we will only concern our selves with the two most widely used algorithms in SPECT reconstruction, namely the FBP and Ordered-Subsets Expectation Maximization (OSEM) algorithms. This chapter describes the basic principles of these two algorithms, and summarises SPECT image attenuation and scatter correction methods. Finally, it presents a study evaluating the volumetric iterative reconstruction algorithm OSEM 3-D, and compares its performance with the FBP algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Cherry, J. A. Sorenson and M. E. Phelps, Physics in Nuclear Medicine (Saunders, Philadelphia, PA, 2003).

    Google Scholar 

  2. H. H. Barrett, Perspectives on SPECT. SPIE 671, 178–183 (1986).

    Google Scholar 

  3. K. Kouris, N. M. Spyrou and D. F. Jackson, Imaging with Ionizing Radiation (Surrey University Press, London, 1982).

    Google Scholar 

  4. G. T. Herman, Image Reconstruction from Projections: the Fundamental of Computerised Tomography (Academic, New York, 1980).

    Google Scholar 

  5. L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography, IEEE Transactions on Medical Imaging 1(2), 113–122 (1982).

    Article  Google Scholar 

  6. H. M. Hudson and R. S. Larkin, Accelerated image reconstruction using ordered subsets of projection data, IEEE Transactions on Medical Imaging 13(4), 601–609 (1994).

    Article  Google Scholar 

  7. B. F. Hutton, J. Nuyts and H. Zaidi, Iterative Reconstruction Methods, edited by H. Zaidi (Springer, New York, 2005) pp. 107–140.

    Google Scholar 

  8. J. Radon, Uber die bestimmung von funktionen durch ihre integral-werte langs gewisser mannigfaltigkeiten, Ber Verh Sachs Akad Wiss 67, 226 (1917).

    Google Scholar 

  9. P. Gilbert, Iterative methods for the three-dimensional reconstruction of an object from projections. Journal of Theoretical Biology 36(1), 105–117 (1972).

    Article  Google Scholar 

  10. F. J. Beekman, W. A. M. de Jong, and S. van Geloven, Efficient Fully 3-D Iterative SPECT reconstruction with Monte Carlo-based scatter compensation, IEEE Transactions on Medical Imaging 21(8), 867–877 (2002).

    Article  Google Scholar 

  11. M. Defrise, D. W. Townsend, R. Clack, Three-dimensional image reconstruction from complete projections, Physics in Medicine and Biology 34(5), 573–587 (1987).

    Article  Google Scholar 

  12. D. R. Gilland, R. J. Jaszcak, T. Riauka, R. E. Coleman., Approximate 3D iterative reconstruction for SPECT, Medical Physics 24(9), 1421–1429 (1997).

    Article  Google Scholar 

  13. M. W. Tsui and E. C. Frey, Analytical Image Reconstruction Methods in Emisssion Computed Tomography, edited by H. Zaidi (Springer, New York, 2005) pp. 82–106.

    Google Scholar 

  14. G. L. Zeng, Image reconstruction: a tutorial, Computerized Medical Imaging and Graphics 25(2), 97–103 (2001).

    Article  Google Scholar 

  15. W. R. Hendee and E. R. Ritenour, Medical Imaging Physics (Wiley, New York, 2002).

    Book  Google Scholar 

  16. D. R. Gilland, B. M. W. Tsui, W. H. McCartney, J. R. Perry, and J. Berg, Determination of the optimum filter fuction for SPECT imaging, Journal of Nuclear Medicine 29(5), 643–650 (1988).

    Google Scholar 

  17. S. Vandenberghe, Y. D'Asseler, R. Van de Walle, T. Kauppinen, M. Koole, L. Bouwens, K. Van Laere, I. Lemahieu and R. A. Dierckx, Iterative reconstruction algorithms in nuclear medicine, Computerized Medical Imaging and Graphics 25, 105–111 (2001).

    Article  Google Scholar 

  18. P. P. Bruyant, Analytic and iterative reconstruction algorithms in SPECT, Journal of Nuclear Medicine 43(10), 1343–1358 (2002).

    Google Scholar 

  19. W. Koch, C. Hamann, J. Welsch, G. Pöpperl, P. E. Radau, and K. Tatsch, Is iterative reconstruction an alternative to filtered backprojection in routine processing of dopamine transporter SPECT studies?, Journal of Nuclear Medicine 46(11), 1804–1811 (2005).

    Google Scholar 

  20. R. L. Byrne, Editorial recent developments in iterative image reconstruction for PET and SPECT, IEEE Transactions on Medical Imaging 19(4), 257–260 (2000).

    Article  Google Scholar 

  21. Flash 3D and e-soft, 2008, Siemens Medical Solutions (September 4, 2008); http://www. medical.siemens.com/siemens

  22. Astonish 3-D, 2008, Philips (September 4, 2008); http://www.medical.philips.com

  23. HOSEM, 2008, HERMES (September 4, 2008); http://www.hermesmedical.com

  24. WBR, 2008, UltraSPECT (September 4, 2008); http://www.ultraspect.com

  25. H. Zaidi, Scatter modeling and compensation in emission totmography. European Journal of Nuclear Medicine and Molecular Imaging 31(5), 761–782 (2004).

    Article  Google Scholar 

  26. T. Kauppinen, M. O. Koskinen, S. Alenius, E. Vanninen and J. T. Kuikka, Improvement of brain perfusion SPET using iterative reconstruction with scatter and non-uniform attenuation correction, European Journal of Nuclear Medicine 27(9), 1380–1386 (2000).

    Article  Google Scholar 

  27. L. T. Chang, A method for attenuation correction in radionuclide computed tomography, IEEE Transactions on Nuclear Science NS-25, 638–643 (1978).

    Article  Google Scholar 

  28. M. G. Erwin, SPECT in the year 2000: basic principles, Journal of Nuclear Medicine 28(4), 233–244 (2000).

    MathSciNet  Google Scholar 

  29. D. J. Kadrmas, E. C. Frey, and B. M. W. Tsui, Application of reconstruction-based scatter compensation to thallium-201 SPECT: implementations for reduced reconstructed image noise. IEEE Transactions on Medical Imaging 17(3), 325–333 (1998).

    Article  Google Scholar 

  30. B. F. Hutton and Y. H. Lau, Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT, Physics in Medicine and Biology 43, 1679–1693 (1998).

    Article  Google Scholar 

  31. P. Gantet, P. Payoux, P. Celler, P. Majorel, D. Gourion, D. Noll and J. P. Esquerré, Iterative three-dimensional expectation maximization restoration of single photon emission computed tomography images: application in striatal imaging. Medical Physics 33(1), 52–59 (2006).

    Article  Google Scholar 

  32. K. Alzimami, S. Sassi, and N. M. Spyrou, Optimization and comparison of 3D-OSEM with FBP SPECT imaging, The 2008 International Conference of Signal and Image Engineering Proceeding I, London July 2008, 632–636.

    Google Scholar 

  33. M. Brambilla, B. Cannillo, M. Dominietto, L. Leva, C. Secco and E. Inglese, Characterization of ordered-subsets expectation maximization with 3D post-reconstruction Gauss filtering and comparison with filtered backprojection in 99mTc SPECT, Annals of Nuclear Medicine 19(2), 75–82 (2005).

    Article  Google Scholar 

  34. T. Yokoi, H. Shinohara and H. Onishi, Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: A simulation study, Annals of Nuclear Medicine 16(1), 11–18 (2002).

    Article  Google Scholar 

  35. V. Kohli, M. King, S. J. Glick, T. S. Pan, Comparison of frequency-distance relationship and Gaussian-diffusionbased method of compensation for distance-dependent spatial resolution in SPECT imaging, Physics in Medicine and Biology 43, 1025–1037 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Alzimami, K.S., Sassi, S.A., Spyrou, N.M. (2009). A Comparison Between 3D OSEM and FBP Image Reconstruction Algorithms in SPECT. In: Ao, SI., Gelman, L. (eds) Advances in Electrical Engineering and Computational Science. Lecture Notes in Electrical Engineering, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2311-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2311-7_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2310-0

  • Online ISBN: 978-90-481-2311-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics