Skip to main content

Family and twin studies have consistently documented that schizophrenia is familial and heritable, but efforts to identify specifi c susceptibility genes have been complicated by the disorder's genetic and phenotypic complexity. Genetic linkage studies have implicated numerous chromosomal regions: genes related to dopaminergic (COMT, MAOA, DBH, DAT1, DA receptors, AKT1), serotonergic (5-HTTLPR, 5-HT2C and 5-HT2A receptors) and glutamatergic (NMDA receptors [GRIN1, GRIN2A, GRIN2B], GMR3, G72 or DAOA, NRG1) neurotransmissions, CAG repeats at the KCNN3 locus, and candidate genes with other mechanisms (DTNBP1, MTHFR, NPAS3, DISC1, RGS4, HOPA, RTN4R, PPP3CC). The use of symptom dimensions of schizophrenia as quantitative phenotypes instead of categorical defi nitions (DSM IV or ICD-10) may be more useful in order to reduce the heterogeneity of schizophrenia. Indeed, some of these genes show affect clinical features with or without altering susceptibility to illness. Although the available supporting evidence for symptom dimensions is variable, this chapter will be focused on the specifi c genetic polymorphisms that may be associated with symptom dimensions of schizophrenia. Authors propose that all genetic and endophenotypes studies of major psychosis should routinely include the exploration of symptom dimensions as well as the other “usual suspects” such as cognitive functions, personality fea- features, etc. We hope delineating relationships between genetic polymorphisms and symptom dimensions may be an important step in understanding the genetics of group of psychoses named today as schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Press. 1994.

    Google Scholar 

  2. The ICD-10 Classification of Mental and Behavioural Disorders. Clinical Descriptions and Diagnostic Guidelines. Geneva, World Health Organization, 1992.

    Google Scholar 

  3. Strauss JS. Hallucinations and delusions as points on conti-nua function. Rating scale evidence. Arch Gen Psychiatr 1969; 21:581– 6.

    CAS  Google Scholar 

  4. van Os J. Is there a continuum of psychotic experiences in the general population? Epidemiol Psychiatr Soc. 2003; 12:242–52.

    Google Scholar 

  5. Lincoln TM. Relevant dimensions of delusions: continuing the continuum versus category debate. Schizophr Res. 2007; 93:211– 20.

    Article  PubMed  Google Scholar 

  6. Kopelowicz A, Ventura J, Liberman RP, Mintz J. Consistency of Brief Psychiatric Rating Scale factor structure across a broad spectrum of schizophrenia patients. Psychopathology 2008; 41:77– 84.

    Article  PubMed  Google Scholar 

  7. Overall JE, Beller SA. The Brief Psychiatric Rating Scale (BPRS) in geropsychiatric research: I. Factor structure on an inpatient unit. J Gerontol 1984; 39:187– 93.

    PubMed  CAS  Google Scholar 

  8. Burger GK, Calsyn RJ, Morse GA, et al. Factor structure of the expanded Brief Psychiatric Rating Scale. J Clin Psychol. 1997; 53:451– 4.

    Article  PubMed  CAS  Google Scholar 

  9. Shafer A. Meta-analysis of the brief psychiatric rating scale factor structure. Psychol Assess. 2005; 17:324– 35.

    Article  PubMed  Google Scholar 

  10. Kay, S.R., Fiszbein, A., Opler, L.A., The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophrenia Bulletin 1987; 13: 261–76.

    PubMed  CAS  Google Scholar 

  11. Kay SR, Sevy S. Pyramidical model of schizophrenia. Schizophr Bull. 1990; 16:537– 45.

    PubMed  CAS  Google Scholar 

  12. Kay SR. Positive and negative syndromes in schizophrenia. Assessment and research. New York: Brunner/Mazel. 1991.

    Google Scholar 

  13. Lindenmayer JP, Grochowski S, Hyman RB. Five factor model of schizophrenia: replication across samples. Schizophr Res. 1995; 14:229– 34.

    Article  PubMed  CAS  Google Scholar 

  14. Lanç on C, Auquier P, Nayt G, Reine G. Stability of the fi ve-factor structure of the Positive and Negative Syndrome Scale (PANSS). Schizophr Res. 2000; 42:231– 9.

    Article  PubMed  Google Scholar 

  15. White L, Harvey PD, Opler L, Lindenmayer JP. Empirical assessment of the factorial structure of clinical symptoms in schizophrenia. A multisite, multimodel evaluation of the factorial structure of the Positive and Negative Syndrome Scale. The PANSS Study Group. Psychopathology 1997; 30: 263– 74.

    PubMed  CAS  Google Scholar 

  16. Lancon C, Aghababian V, Llorca PM, Auquier P. Factorial structure of the Positive and Negative Syndrome Scale (PANSS): a forced fi ve-dimensional factor analysis. Acta Psychiatr Scand. 1998; 98: 369– 76.

    Article  PubMed  CAS  Google Scholar 

  17. Lykouras L, Oulis P, Psarros K, Daskalopoulou E, Botsis A, Christodoulou GN

    Google Scholar 

  18. Stefanis C. Five-factor model of schizophrenic psychopa-thology how valid is it? Eur Arch Psychiatr Clin Neurosci. 2000; 250:93–100.

    Article  Google Scholar 

  19. Mohr PE, Cheng CM, Claxton K, et al. The heterogeneity of schizophrenia in disease states. Schizophr Res. 2004; 71:83– 95.

    Article  PubMed  Google Scholar 

  20. Andreasen NC. Methods for assessing positive and negative symptoms. Mod Probl Pharmacopsychiatr. 1990; 24:73– 88.

    CAS  Google Scholar 

  21. Minas IH, Stuart GW, Klimidis S, Jackson HJ, Singh BS, Copolov DL. Positive and negative symptoms in the psychoses: multidimensional scaling of SAPS and SANS items. Schizophr Res. 1992; 8:143– 56.

    Article  PubMed  CAS  Google Scholar 

  22. Peralta V, Cuesta MJ. Dimensional structure of psychotic symptoms: an item-level analysis of SAPS and SANS symptoms in psychotic disorders. Schizophr Res. 1999; 38:13– 26.

    Article  PubMed  CAS  Google Scholar 

  23. Masiak M, Loza B. [Core factors of schizophrenia structure based on PANSS and SAPS/SANS results. Discerning and head-to-head comparison of PANSS and SASPS/SANS validity] Psychiatr Pol. 2004; 38:795– 808.

    PubMed  Google Scholar 

  24. McGuffi n P, Farmer A, Harvey I. A polydiagnostic application of operational criteria in studies of psychotic illness. Development and reliability of the OPCRIT system Arch Gen Psychiatry 1991; 48:764– 70.

    CAS  Google Scholar 

  25. Williams J, Farmer AE, Ackenheil M, et al. A multicentre inter-rater reliability study using the OPCRIT computerized diagnostic system. Psychol Med. 1996; 26:775– 83.

    Article  PubMed  CAS  Google Scholar 

  26. Cardno AG, Jones LA, Murphy KC, et al Factor analysis of schizophrenic symptoms using the OPCRIT checklist. Schizophr Res. 1996; 22:233–9.

    Article  PubMed  CAS  Google Scholar 

  27. Cardno AG, Holmans PA, Harvey I, et al. Factor-derived subsyndromes of schizophrenia and familial morbid risks. Schizophr Res. 1997; 23:231– 8.

    Article  PubMed  CAS  Google Scholar 

  28. Hanssen M, Bak M, Bijl R, Vollebergh W, van Os J. The incidence and outcome of subclinical psychotic experiences in the general population. Br J Clin Psychol. 2005; 44:181– 91.

    Article  PubMed  Google Scholar 

  29. Larø i F, Marczewski P, Van der Linden M. Further evidence of the multi-dimensionality of hallucinatory predisposition: factor structure of a modifi ed version of the Launay-Slade Hallucinations Scale in a normal sample. Eur Psychiatr 2004; 19:15– 20.

    Article  Google Scholar 

  30. Garrett M, Stone D, Turkington D. Normalizing psychotic symptoms. Psychol Psychother. 2006; 79:595– 610.

    Article  PubMed  Google Scholar 

  31. Aleman A, Nieuwenstein MR, Bö cker KB, de Haan EH. Temporal stability of the Launay-Slade Hallucination Scale for high- and low-scoring normal subjects. Psychol Rep. 1999; 85:1101– 4.

    Article  PubMed  CAS  Google Scholar 

  32. Yoshizumi T, Murase S, Honjo S, et al. Hallucinatory experiences in a community sample of Japanese children. J Am Acad Child Adolesc Psychiatr. 2004; 43:1030– 6.

    Article  Google Scholar 

  33. Stefanis NC, Hanssen M, Smirnis NK, et al. Evidence that three dimensions of psychosis have a distribution in the general population. Psychol Med. 2002; 32:347– 58.

    Article  PubMed  CAS  Google Scholar 

  34. van Os J, Hanssen M, Bijl RV, Ravelli A. Strauss (1969) revisited a psychosis continuum in the general population? Schizophr Res. 2000; 45:11–20.

    Article  PubMed  Google Scholar 

  35. Cougnard A, Marcelis M, Myin-Germeys I, et al. Does normal developmental expression of psychosis combine with environmental risk to cause persistence of psychosis? A psychosis proneness-persistence model. Psychol Med. 2007; 37:513– 27.

    Article  PubMed  Google Scholar 

  36. Wickham H, Walsh C, Asherson P, et al. Familiality of clinical characteristics in schizophrenia. J Psychiatr Res. 2002; 36:325– 9.

    Article  PubMed  Google Scholar 

  37. Vazquez-Barquero, J.L., Cuesta Nunez, M.J., et al. Sociodemographic and clinical variables as predictors of the diagnostic characteristics of fi rst episodes of schizophrenia. Acta Psychiatr Scand 1996; 94:149– 55.

    Article  PubMed  CAS  Google Scholar 

  38. Malaspina, D., Goetz, R.R., Yale, S., et al. Relation of familial schizophrenia to negative symptoms but not to the deficit syndrome. Am J Psychiatr 2000; 157: 994– 1003.

    Article  PubMed  CAS  Google Scholar 

  39. Choi KS, Jeon HO, Lee YS, et al. Familial association of schizophrenia symptoms retrospectively measured on a lifetime basis. Psychiatr Genet. 2007; 17:103– 7.

    Article  PubMed  Google Scholar 

  40. Cardno AG, Frü hling V Rijsdijk, et al. Twin study refi ning psychotic symptom dimensions as phenotypes for genetic research. Am J Med Genet B Neuropsychiatr Genet. 2008: 18384051

    Google Scholar 

  41. Wickham H, Walsh C, Asherson P, et al. Familiality of symptom dimensions in schizophrenia. Schizophr Res. 2001; 47:223– 32.

    Article  PubMed  CAS  Google Scholar 

  42. Ritsner M, Ratner Y, Gibel A, Weizman R. Familiality in a fi ve-factor model of schizophrenia psychopathology: fi nd-ings from a 16-month follow-up study. Psychiatr Res. 2005; 136:173– 9.

    Article  Google Scholar 

  43. Rietkerk T, Boks MP, Sommer IE, et al. The genetics of symptom dimensions of schizophrenia: Review and meta-analysis. Schizophr Res. 2008 Mar 5.

    Google Scholar 

  44. Stefansson H, Sigurdsson E, Steinthorsdottir V, et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet. 2002; 71:877– 92.

    Article  PubMed  Google Scholar 

  45. Straub RE, Jiang Y, MacLean CJ, et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet. 2002; 71:337– 48.

    Article  PubMed  CAS  Google Scholar 

  46. Miyoshi K, Honda A, Baba K, et al. Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatr. 2003; 8:685– 94.

    Article  CAS  Google Scholar 

  47. Fan JB, Zhang CS, Gu NF, et al. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatr. 2005; 57:139– 44.

    Article  CAS  Google Scholar 

  48. Munafo MR, Bowes L, Clark TG, Flint J. Lack of association of the COMT (Val(158/108) Met) gene and schizophrenia: a meta-analysis of case— control studies. Mol Psychiatr. 2005; 10:765– 70.

    Article  CAS  Google Scholar 

  49. Chumakov I, Blumenfeld M, Guerassimenko O, et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A. 2002; 99:13675– 80.

    Article  PubMed  CAS  Google Scholar 

  50. Chowdari K V, Mirnics K, Semwal P, et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet. 2002; 11:1373– 80.

    Article  PubMed  CAS  Google Scholar 

  51. Novak G, Kim D, Seeman P, Tallerico T. Schizophrenia and Nogo: elevated mRNA in cortex, and high prevalence of a homozygous CAA insert. Brain Res Mol Brain Res. 2002; 107:183– 9.

    Article  PubMed  CAS  Google Scholar 

  52. Gerber DJ, Hall D, Miyakawa T, et al. Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci U S A. 2003; 100:8993– 8.

    Article  PubMed  CAS  Google Scholar 

  53. Brzustowicz LM, Simone J, Mohseni P, et al. Linkage disequilibrium mapping of schizophrenia susceptibility to the CAPON region of chromosome 1q22. Am J Hum Genet. 2004; 74:1057– 63.

    Article  PubMed  CAS  Google Scholar 

  54. Owen MJ, Craddock N, O' Donovan MC. Schizophrenia genes at last? Trends Genet. 2005; 21:518–25.

    Article  PubMed  CAS  Google Scholar 

  55. Joober R, Sengupta S, Boksa P. Genetics of developmental psychiatric disorders: pathways to discovery. J Psychiatr Neurosci. 2005; 30:349– 54.

    Google Scholar 

  56. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatr. 2005; 10:40– 68.

    Article  CAS  Google Scholar 

  57. Lang UE, Puls I, Muller DJ, et al. Molecular mechanisms of schizophrenia. Cell Physiol Biochem. 2007; 20:687– 702.

    Article  PubMed  CAS  Google Scholar 

  58. Joober R, Boksa P, Benkelfat C, Rouleau G. Genetics of schizophrenia: from animal models to clinical studies. J Psychiatr Neurosci. 2002; 27:336– 47.

    Google Scholar 

  59. Tandon R, Keshavan MS, Nasrallah HA. Schizophrenia, “ Just the Facts” What we know in 2008. 2. Epidemiology and etiology. Schizophr Res. 2008; 100:4– 19.

    Article  PubMed  Google Scholar 

  60. Mowry BJ, Nancarrow DJ. Molecular genetics of schizophrenia. Clin Exp Pharmacol Physiol. 2001; 28:66– 9.

    Article  PubMed  CAS  Google Scholar 

  61. Pae CU, Kim JJ, Lee SJ, et al. Polymorphism of the serotonin transporter gene and symptomatic dimensions of schizophrenia in the Korean population. Neuropsychobiology. 2003; 47:182– 6.

    Article  PubMed  CAS  Google Scholar 

  62. Kaiser R, Tremblay PB, Schmider J, et al. Serotonin transporter polymorphisms: no association with response to antipsychotic treatment, but associations with the schizopar-anoid and residual subtypes of schizophrenia. Mol Psychiatr 2001; 6:179– 85.

    Article  CAS  Google Scholar 

  63. Reynolds GP, Yao Z, Zhang X, Sun J, Zhang Z. Pharmacogenetics of treatment in fi rst-episode schizophrenia: D3 and 5-HT2C receptor polymorphisms separately associate with positive and negative symptom response. Eur Neuropsychopharmacol. 2005; 5:143– 51.

    Article  CAS  Google Scholar 

  64. Hamdani N, Bonnié re M, Adé s J, Hamon M, Boni C, Gorwood P. Negative symptoms of schizophrenia could explain discrepant data on the association between the 5-HT2A receptor gene and response to antipsychotics. Neurosci Lett. 2005; 377:69– 74.

    Article  PubMed  CAS  Google Scholar 

  65. Yue W, Kang G, Zhang Y, et al. Association of DAOA polymorphisms with schizophrenia and clinical symptoms or therapeutic effects. Neurosci Lett. 2007; 416:96– 100.

    Article  PubMed  CAS  Google Scholar 

  66. Cardno AG, Bowen T, Guy CA, et al. CAG repeat length in the hKCa3 gene and symptom dimensions in schizophrenia. Biol Psychiatr. 1999; 45:1592– 6.

    Article  CAS  Google Scholar 

  67. Ritsner M, Modai I, Ziv H, et al. An association of CAG repeats at the KCNN3 locus with symptom dimensions of schizophrenia. Biol Psychiatr. 2002; 51:788– 94.

    Article  CAS  Google Scholar 

  68. Roffman JL, Weiss AP, Purcell S, et al. Contribution of methylenetetrahydrofolate reductase (MTHFR) polymorphisms to negative symptoms in schizophrenia. Biol Psychiatr. 2008; 63:42– 8.

    Article  CAS  Google Scholar 

  69. Fanous AH, van den Oord EJ, Riley BP, et al. Relationship between a high-risk haplotype in the DTNBP1 (dysbindin) gene and clinical features of schizophrenia. Am J Psychiatr. 2005; 162:1824– 32.

    Article  PubMed  Google Scholar 

  70. DeRosse P, Funke B, Burdick KE, et al. Dysbindin genotype and negative symptoms in schizophrenia. Am J Psychiatr. 2006; 163:532– 4.

    Article  PubMed  Google Scholar 

  71. Corvin A, Donohoe G, Nangle JM, et al. A dysbindin risk haplotype associated with less severe manic-type symptoms in psychosis. Neurosci Lett. 2008; 431:146– 9.

    Article  PubMed  CAS  Google Scholar 

  72. Spinks R, Sandhu HK, Andreasen NC, Philibert RA. Association of the HOPA12bp allele with a large X-chromosome haplotype and positive symptom schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2004; 127B:20– 7.

    Article  PubMed  Google Scholar 

  73. Hennah W, Varilo T, Kestilä M, et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet. 2003; 12:3151– 9.

    Article  PubMed  CAS  Google Scholar 

  74. Lane H Y, Liu YC, Huang CL, et al. RGS4 polymorphisms predict clinical manifestations and responses to risperidone treatment in patients with schizophrenia. J Clin Psychopharmacol. 2008; 28:64– 8.

    Article  PubMed  CAS  Google Scholar 

  75. Molero P, Ortuñ o F, Zalacain M, Patiñ o-Garcí a A. Clinical involvement of catechol-O-methyltransferase polymor-phisms in schizophrenia spectrum disorders: infl uence on the severity of psychotic symptoms and on the response to neu-roleptic treatment. Pharmacogenomics J. 2007; 7:418– 26.

    Article  PubMed  CAS  Google Scholar 

  76. Philibert RA. A meta-analysis of the association of the HOPA12bp polymorphism and schizophrenia. Psychiatr Genet. 2006; 16:73– 6.

    Article  PubMed  Google Scholar 

  77. DeRosse P, Hodgkinson CA, Lencz T., et al. Disrupted in schizophrenia 1 genotype and positive symptoms in schizophrenia. Biol Psychiatry 2007; 61:1208– 10.

    Article  PubMed  CAS  Google Scholar 

  78. Hall J, Whalley HC, Job DE, et al. A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat Neurosci. 2006; 9:1477– 8.

    Article  PubMed  CAS  Google Scholar 

  79. So HC, Chen RY, Chen E Y, et al. An association study of RGS4 polymorphisms with clinical phenotypes of schizophrenia in a Chinese population. Am J Med Genet B Neuropsychiatr Genet. 2008; 147B:77– 85.

    Article  PubMed  CAS  Google Scholar 

  80. Corvin A, Donohoe G, McGhee K, et al. D-amino acid oxi-dase (DAO) genotype and mood symptomatology in schizophrenia. Neurosci Lett. 2007; 426:97– 100.

    Article  PubMed  CAS  Google Scholar 

  81. Fanous AH, Neale MC, Straub RE, et al. Clinical features of psychotic disorders and polymorphisms in HT2A, DRD2, DRD4, SLC6A3 (DAT1), and BDNF: a family based association study. Am J Med Genet B Neuropsychiatr Genet. 2004; 125B:69– 78.

    Article  PubMed  Google Scholar 

  82. Golimbet VE, Alfimova MV, Shchebatykh TV, et al. Serotonin transporter polymorphism and depressive-related symptoms in schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2004; 126B:1– 7.

    Article  PubMed  CAS  Google Scholar 

  83. McClay JL, Fanous A, van den Oord EJ, et al. Catechol-O-methyltransferase and the clinical features of psychosis. Am J Med Genet B Neuropsychiatr Genet. 2006; 141B:935– 8.

    Article  PubMed  CAS  Google Scholar 

  84. Abdolmaleky HM, Smith CL, Zhou JR, Thiagalingam S. Epigenetic alterations of the dopaminergic system in major psychiatric disorders. Methods Mol Biol. 2008; 448:187– 212.

    Article  PubMed  CAS  Google Scholar 

  85. Williams HJ, Glaser B, Williams NM, et al. No association between schizophrenia and polymorphisms in COMT in two large samples. Am J Psychiatr. 2005; 162:1736– 8.

    Article  PubMed  Google Scholar 

  86. Norton N, Kirov G, Zammit S, et al. Schizophrenia and functional polymorphisms in the MAOA and COMT genes: no evidence for association or epistasis. Am J Med Genet. 2002; 114:491– 6.

    Article  PubMed  Google Scholar 

  87. Matsumoto C, Shinkai T, Hori H, et al. Polymorphisms of dopamine degradation enzyme (COMT and MAO) genes and tardive dyskinesia in patients with schizophrenia. Psychiatr Res. 2004; 127:1– 7.

    Article  CAS  Google Scholar 

  88. Srivastava V, Varma PG, Prasad S, et al. Genetic susceptibility to tardive dyskinesia among schizophrenia subjects: I V. Role of dopaminergic pathway gene polymorphisms. Pharmacogenet Genomics. 2006; 16:111– 7.

    CAS  Google Scholar 

  89. Talkowski ME, Bamne M, Mansour H, Nimgaonkar VL. Dopamine genes and schizophrenia case closed or evidence pending? Schizophr Bull. 2007; 33:1071–81.

    Article  PubMed  Google Scholar 

  90. Fresan A, Camarena B, Apiquian R, et al. Association study of MAO-A and DRD4 genes in schizophrenic patients with aggressive behavior. Neuropsychobiology. 2007; 55:171– 5.

    Article  PubMed  CAS  Google Scholar 

  91. Herken H, Erdal ME. Catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association between symptomatology and prognosis. Psychiatr Genet. 2001; 11:105– 9.

    Article  PubMed  CAS  Google Scholar 

  92. Tsai SJ, Hong CJ, Liao DL, et al. Association study of a functional catechol-O-methyltransferase genetic polymorphism with age of onset, cognitive function, symptomatology and prognosis in chronic schizophrenia. Neuropsychobiology. 2004; 49:196– 200.

    Article  PubMed  CAS  Google Scholar 

  93. Strous RD, Lapidus R, Viglin D, et al. Analysis of an association between the COMT polymorphism and clinical symptomatology in schizophrenia. Neurosci Lett. 2006; 393:170– 3.

    Article  PubMed  CAS  Google Scholar 

  94. Tybura P, Grzywacz A, Syrek S, et al. [Association of functional genes polymorphisms of key enzymes in the metabolism of biogenic amines with paranoid schizophrenia susceptibility and the infl uence of these polymorphisms on PANSS results in antipsychotic treatment]. Psychiatr Pol. 2006; 40:913– 23.

    PubMed  Google Scholar 

  95. Williams HJ, Owen MJ, O' Donovan MC. Is COMT a susceptibility gene for schizophrenia? Schizophr Bull. 2007; 33:635–41.

    Article  PubMed  Google Scholar 

  96. Vandenbergh, D. J.; Persico, A. M.; Hawkins, A. L.; et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics. 1992; 14:1104– 06.

    Article  PubMed  CAS  Google Scholar 

  97. Giros B, El Mestikawy S, Godinot N, et al. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Molec. Pharm. 1992; 42: 383– 90.

    PubMed  CAS  Google Scholar 

  98. Jeong SH, Joo EJ, Ahn YM, Kim YS. Association study of dopamine transporter gene and schizophrenia in Korean population using multiple single nucleotide polymorphism markers. Prog Neuropsychopharmacol Biol Psychiatr. 2004; 28:975– 83.

    Article  CAS  Google Scholar 

  99. Inada T, Sugita T, Dobashi I, et al. Dopamine transporter gene polymorphism and psychiatric symptoms seen in schizophrenic patients at their fi rst episode. Am J Med Genet. 1996; 67:406– 8.

    Article  PubMed  CAS  Google Scholar 

  100. Georgieva L, Dimitrova A, Nikolov I, et al. Dopamine transporter gene (DAT1) VNTR polymorphism in major psychiatric disorders: family-based association study in the Bulgarian population. Acta Psychiatr Scand. 2002; 105:396– 9.

    Article  PubMed  CAS  Google Scholar 

  101. Schindler K. M, Pato M. T, Dourado A, et al. Association and linkage disequilibrium between a functional polymorphism of the dopamine-2 receptor gene and schizophrenia in a genetically homogeneous Portuguese population. Molec. Psychiat. 2002; 7:1002– 05.

    CAS  Google Scholar 

  102. Glatt SJ, Faraone S V, Tsuang MT. CAG-repeat length in exon 1 of KCNN3 does not infl uence risk for schizophrenia or bipolar disorder: a meta-analysis of association studies. Am J Med Genet B Neuropsychiatr Genet. 2003 Aug 15; 121B(1):14– 20.

    Article  PubMed  Google Scholar 

  103. Dolzan V, Plesnicar BK, Serretti A, et al. Polymorphisms in dopamine receptor DRD1 and DRD2 genes and psycho-pathological and extrapyramidal symptoms in patients on long-term antipsychotic treatment. Am J Med Genet B Neuropsychiatr Genet. 2007; 144:809– 15.

    Google Scholar 

  104. Craig S. P, Buckle V. J, Lamouroux A, et al. Localization of the human dopamine beta hydroxylase (DBH) gene to chromosome 9q34. Cytogenet. Cell Genet. 1988; 48:48– 50.

    Article  PubMed  CAS  Google Scholar 

  105. Cubells JF, Kobayashi K, Nagatsu T, et al. Population genetics of a functional variant of the dopamine beta-hydroxylase gene (DBH). Am J Med Genet. 1997; 74:374– 9.

    Article  PubMed  CAS  Google Scholar 

  106. Williams HJ, Bray N, Murphy KC, et al. No evidence for allelic association between schizophrenia and a functional variant of the human dopamine beta-hydroxylase gene (DBH). Am J Med Genet. 1999; 88:557– 9.

    Article  PubMed  CAS  Google Scholar 

  107. Yamamoto K, Cubells JF, Gelernter J, et al. Dopamine beta-hydroxylase (DBH) gene and schizophrenia pheno-typic variability: a genetic association study. Am J Med Genet B Neuropsychiatr Genet. 2003; 117B:33– 8.

    Article  PubMed  Google Scholar 

  108. Thiselton DL, Vladimirov VI, Kuo PH, et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatr 2008; 63:449– 57.

    Article  CAS  Google Scholar 

  109. Schwab S. G, Hoefgen B, Hanses C, et al. Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol. Psychiatr. 2005; 58: 446– 50.

    Article  CAS  Google Scholar 

  110. Tan H Y, Nicodemus KK, Chen Q, et al. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest. 2008; 118:2200– 8.

    PubMed  CAS  Google Scholar 

  111. Kamnasaran, D.; Muir, W. J.; Ferguson-Smith, M. A.; Cox, D. W. Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J. Med. Genet. 2003; 40: 325– 32.

    Article  PubMed  CAS  Google Scholar 

  112. Pieper AA, Wu X, Han TW, Estill SJ, et al. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci U S A. 2005; 102:14052– 7.

    Article  PubMed  CAS  Google Scholar 

  113. Lavedan C, Licamele L, Volpi S, et al. Association of the NPAS3 gene and five other loci with response to the antipsy-chotic iloperidone identified in a whole genome association study. Mol Psychiatr. 2008 Jun 3. [Epub ahead of print].

    Google Scholar 

  114. Pickard BS, Christoforou A, Thomson PA, et al. Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder. Mol Psychiatr. 2008 Mar 4.

    Google Scholar 

  115. Tsai SJ, Hong CJ, Yu YW, et al. Association study of a functional serotonin transporter gene polymorphism with schizophrenia, psychopathology and clozapine response. Schizophr Res. 2000; 44:177– 81.

    Article  PubMed  CAS  Google Scholar 

  116. Hranilovic D, Schwab SG, Jernej B, et al. Serotonin transporter gene and schizophrenia: evidence for association/ linkage disequilibrium in families with affected siblings. Mol Psychiatr. 2000; 5:91– 5.

    Article  CAS  Google Scholar 

  117. Serretti A, Lilli R, Lorenzi C, et al. Serotonin transporter gene (5-HTTLPR) and major psychoses. Mol Psychiatr. 2002; 7:95– 9.

    Article  CAS  Google Scholar 

  118. Fan JB, Sklar P. Meta-analysis reveals association between serotonin transporter gene STin2 VNTR polymorphism and schizophrenia. Mol Psychiatr. 2005; 10:928– 38, 891.

    Article  CAS  Google Scholar 

  119. Kapelski P, Hauser J, Dmitrzak-Weglarz M, et al. [Lack of association between the insertion/deletion polymorphism in the serotonin transporter gene and schizophrenia] Psychiatr Pol. 2006; 40;925–35.

    PubMed  Google Scholar 

  120. Sá iz PA, Garcí a-Portilla MP, Arango C, et al. Association study of serotonin 2A receptor (5-HT2A) and serotonin transporter (5-HTT) gene polymorphisms with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatr 2007; 31:741– 5.

    Article  CAS  Google Scholar 

  121. Naylor L, Dean B, Pereira A, et al. No association between the serotonin transporter-linked promoter region polymorphism and either schizophrenia or density of the serotonin transporter in human hippocampus. Mol Med 1998; 4:671– 4.

    PubMed  CAS  Google Scholar 

  122. Chong SA, Lee WL, Tan CH, et al. Attempted suicide and polymorphism of the serotonin transporter gene in Chinese patients with schizophrenia. Psychiatr Res. 2000; 97:101– 6.

    Article  CAS  Google Scholar 

  123. Mendes de Oliveira JR, Otto PA, et al. Analysis of a novel functional polymorphism within the promoter region of the serotonin transporter gene (5-HTT) in Brazilian patients affected by bipolar disorder and schizophrenia. Am J Med Genet. 1998; 81:225– 7.

    Article  PubMed  CAS  Google Scholar 

  124. Malhotra AK, Goldman D, Mazzanti C, et al. A functional serotonin transporter (5-HTT) polymorphism is associated with psychosis in neuroleptic-free schizophrenics. Mol Psychiatr. 1998; 3:328– 32.

    Article  CAS  Google Scholar 

  125. Serretti A, Catalano M, Smeraldi E. Serotonin transporter gene is not associated with symptomatology of schizophrenia. Schizophr Res. 1999; 35:33– 9.

    Article  PubMed  CAS  Google Scholar 

  126. Serretti A, Cusin C, Lattuada E, et al. No interaction between serotonin transporter gene and dopamine receptor D4 gene in symptomatology of major psychoses. Am J Med Genet. 1999; 88:481– 5.

    Article  PubMed  CAS  Google Scholar 

  127. Fitzgerald PB, de Castella AR, Brewer K, et al. A confi r-matory factor analytic evaluation of the pentagonal PANSS model. Schizophr Res. 2003; 61:97– 104.

    Article  PubMed  Google Scholar 

  128. Chavez-Noriega LE, Schaffhauser H, Campbell UC. Metabotropic glutamate receptors: potential drug targets for the treatment of schizophrenia. Curr Drug Targets CNS Neurol Disord. 2002; 1:261– 81.

    Article  PubMed  CAS  Google Scholar 

  129. Coyle JT. Glutamate and schizophrenia: beyond the dop-amine hypothesis. Cell Mol Neurobiol. 2006; 26:365– 84.

    Article  PubMed  CAS  Google Scholar 

  130. Javitt DC, Zylberman I, Zukin SR, et al. Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatr. 1994; 151:1234– 6.

    PubMed  CAS  Google Scholar 

  131. Heresco-Levy U, Javitt D, Ermilov M, et al. Double-blind, placebo-controlled, crossover trial of glycine adjuvant therapy for treatment-resistant schizophrenia. Br J Psychiatr. 1996; 169:610– 17.

    Article  CAS  Google Scholar 

  132. Heresco-Levy U, Javitt D, Ermilov M, et al. Effi cacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatr. 1999; 56:29– 36

    Article  PubMed  CAS  Google Scholar 

  133. Karp S. J, Masu M, Eki, T, et al. Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-D-aspartate receptor. J. Biol. Chem. 1993; 268: 3728– 33.

    PubMed  CAS  Google Scholar 

  134. Meador-Woodruff JH, Healy DJ: Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev. 2000; 31:288–294.

    Article  PubMed  CAS  Google Scholar 

  135. Goff DC, Coyle JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatr. 2001; 158:1367– 77.

    Article  PubMed  CAS  Google Scholar 

  136. Wood PL. The NMDA receptor complex: a long and winding road to therapeutics. Drugs. 2005; 8:229– 35.

    CAS  Google Scholar 

  137. Rogawski MA, Wenk GL. The neuropharmacological basis for the use of memantine in the treatment of Alzheimer' s disease. CNS Drug Rev. 2003; 9:275– 308.

    PubMed  CAS  Google Scholar 

  138. Neeman G, Blanaru M, Bloch B, et al. Relation of plasma glycine, serine, and homocysteine levels to schizophrenia symptoms and medication type. Am J Psychiatr. 2005; 162:1738– 40.

    Article  PubMed  Google Scholar 

  139. Qin S, Zhao X, Pan Y, et al. An association study of the N-methyl-D-aspartate receptor NR1 subunit gene (GRIN1) and NR2B subunit gene (GRIN2B) in schizophrenia with universal DNA microarray. Eur J Hum Genet. 2005; 13:807– 14.

    Article  PubMed  CAS  Google Scholar 

  140. Tang J, Chen X, Xu X, et al. Signifi cant linkage and association between a functional (GT)n polymorphism in promoter of the N-methyl-D-aspartate receptor subunit gene (GRIN2A) and schizophrenia. Neurosci Lett. 2006; 409:80– 2.

    Article  PubMed  CAS  Google Scholar 

  141. Scherer SW, Duvoisin RM, Kuhn R, et al. Localization of two metabotropic glutamate receptor genes, GRM3 and GRM8, to human chromosome 7q. Genomics. 1996; 31:230– 3.

    Article  PubMed  CAS  Google Scholar 

  142. Corti C, Xuereb JH, Corsi M, Ferraguti F. Identifi cation and characterization of the promoter region of the GRM3 gene. Biochem Biophys Res Commun. 2001; 286:381– 7.

    Article  PubMed  CAS  Google Scholar 

  143. Norton N, Williams HJ, Dwyer S, et al. No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatr. 2005; 5:23.

    Article  CAS  Google Scholar 

  144. Chen Q, He G, Chen Q, et al. A case-control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schi-zophr Res. 2005; 73:21– 6.

    Article  Google Scholar 

  145. Tochigi M, Suga M, Ohashi J, et al. No association between the metabotropic glutamate receptor type 3 gene (GRM3) and schizophrenia in a Japanese population. Schizophr Res. 2006; 88:260– 4.

    Article  PubMed  Google Scholar 

  146. Albalushi T, Horiuchi Y, Ishiguro H, et al. Replication study and meta-analysis of the genetic association of GRM3 gene polymorphisms with schizophrenia in a large Japanese case-control population. Am J Med Genet B Neuropsychiatr Genet. 2008; 147:392– 6.

    PubMed  Google Scholar 

  147. Schwab SG, Plummer C, Albus M, et al. DNA sequence variants in the metabotropic glutamate receptor 3 and risk to schizophrenia: an association study. Psychiatr Genet. 2008; 18:25– 30.

    Article  PubMed  Google Scholar 

  148. Martí SB, Cichon S, Propping P, Nö then M. Metabotropic glutamate receptor 3 (GRM3) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. Am J Med Genet. 2002; 114:46– 50.

    Article  PubMed  Google Scholar 

  149. Fujii Y, Shibata H, Kikuta R, et al. Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet. 2003; 13:71– 6.

    Article  PubMed  Google Scholar 

  150. Egan MF, Straub RE, Goldberg TE, et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A. 2004; 101:12604– 9.

    Article  PubMed  CAS  Google Scholar 

  151. Marenco S, Steele SU, Egan MF, et al. Effect of metabotro-pic glutamate receptor 3 genotype on N-acetylaspartate measures in the dorsolateral prefrontal cortex. Am J Psychiatr. 2006; 163:740– 2.

    Article  PubMed  Google Scholar 

  152. Mö ssner R, Schuhmacher A, Schulze-Rauschenbach S, et al. Further evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. Eur Neuropsychopharmacol. 2008; 18:768– 72.

    Article  PubMed  CAS  Google Scholar 

  153. Hattori E, Liu C, Badner JA, et al. Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. J Hum Genet. 2003; 72:1131– 40.

    Article  CAS  Google Scholar 

  154. Badner JA, Gershon ES. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatr. 2002; 7:405– 11.

    Article  CAS  Google Scholar 

  155. Korostishevsky M, Kaganovich M, Cholostoy A, Ashkenazi M, Ratner Y, Dahary D, Bernstein J, Bening-Abu-Shach U, Ben-Asher E, Lancet D, Ritsner M, Navon R. Is the G72/ G30 locus associated with schizophrenia? single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol Psychiatr. 2004; 56:169– 76.

    Article  CAS  Google Scholar 

  156. Corvin A, McGhee KA, Murphy K, et al. Evidence for association and epistasis at the DAOA/G30 and D-amino acid oxidase loci in an Irish schizophrenia sample. Am J Med Genet B Neuropsychiatr Genet. 2007; 144B:949– 53.

    Article  PubMed  CAS  Google Scholar 

  157. Shi J, Badner JA, Gershon ES, Liu C. Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis. Schizophr Res. 2008; 98: 89– 97.

    Article  PubMed  Google Scholar 

  158. Corvin A, Donohoe G, McGhee K, et al. D-amino acid oxi-dase (DAO) genotype and mood symptomatology in schizophrenia. Neurosci Lett. 2007; 426:97– 100.

    Article  PubMed  CAS  Google Scholar 

  159. Tan W, Wang Y, Gold B, et al. Molecular cloning of a brain-specific, developmentally regulated neuregulin 1 (NRG1) isoform and identifi cation of a functional promoter variant associated with schizophrenia. J. Biol. Chem. 2007; 282: 24343– 51.

    Article  PubMed  CAS  Google Scholar 

  160. Buonanno A, Kwon OB, Yan L, et al. Neuregulins and neu-ronal plasticity: possible relevance in schizophrenia. Novartis Found Symp. 2008; 289:165– 77; discussion 177– 9, 193– 5.

    Article  PubMed  CAS  Google Scholar 

  161. Britsch S. The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol. 2007; 190:1– 65.

    Article  PubMed  Google Scholar 

  162. Stefansson H, Steinthorsdottir V, Thorgeirsson TE, et al. Neuregulin 1 and schizophrenia. Ann Med. 2004; 36(1): 62– 71.

    Article  PubMed  CAS  Google Scholar 

  163. Hahn CG, Wang HY, Cho DS, et al. Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypo-function in schizophrenia. Nat Med. 2006; 12:824– 8.

    Article  PubMed  CAS  Google Scholar 

  164. Woo R.-S, Li X.-M, Tao Y, et al. Neuregulin-1 enhances depolarization-induced GABA release. Neuron. 2007; 54: 599– 610.

    Article  PubMed  CAS  Google Scholar 

  165. Stefansson H, Sarginson J, Kong A, et al. Association of neuregulin 1 with schizophrenia confi rmed in a Scottish population. Am J Hum Genet. 2003; 72:83– 7.

    Article  PubMed  CAS  Google Scholar 

  166. Green, E.K., Raybould, R., Macgregor, S., et al. Operation of the schizophrenia susceptibility gene, neuregulin 1, across traditional diagnostic boundaries to increase risk for bipolar disorder. Arch. Gen. Psychiatr. 2005; 62: 642– 648.

    Article  PubMed  CAS  Google Scholar 

  167. Li D, Collier DA, He L. Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Hum Mol Genet. 2006; 15:1995– 2002.

    Article  PubMed  CAS  Google Scholar 

  168. Wang L, Fang C, Zhang A, et al. The -1019 C/G polymorphism of the 5-HT1A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J Psychopharmacol. 2008 Nov: 22(8):904– 909.

    Article  PubMed  CAS  Google Scholar 

  169. Law AJ, Kleinman JE, Weinberger DR, Weickert CS. Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice-variant expression in the brain in schizophrenia. Hum Mol Genet. 2007; 16:129–141.

    Article  PubMed  CAS  Google Scholar 

  170. Van den Oord EJ, Rujescu D, Robles JR, et al. Factor structure and external validity of the PANSS revisited. Schizophr Res. 2006; 82:213– 23.

    Article  PubMed  Google Scholar 

  171. Kishimoto M, Ujike H, Motohashi Y, et al. The dysbindin gene (DTNBP1) is associated with methamphetamine psychosis. Biol Psychiatr. 2008; 63:191– 6.

    Article  CAS  Google Scholar 

  172. Talbot K, Eidem WL, Tinsley CL, et al. Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J. Clin. Invest. 2004; 113:1353– 63.

    PubMed  CAS  Google Scholar 

  173. Gerber H-P, Seipel K, Georgiev O, et al. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science. 1994; 263:808– 11.

    Article  PubMed  CAS  Google Scholar 

  174. Margolis RL, Abraham MA, Gatchell SB, et al. cDNAs with long CAG trinucleotide repeats from human brain. Hum Genet. 1997; 100:114– 22.

    Article  PubMed  CAS  Google Scholar 

  175. Kleiderlein JJ, Nisson PE, Jessee J, et al. CAG repeats in cDNA from human brain. Hum Genet. 1998; 103:666– 673.

    Article  PubMed  CAS  Google Scholar 

  176. Chandy KG, Fantino E, Wittekindt O, et al. Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder? Mol Psychiatr. 1998; 3: 32– 7.

    Article  CAS  Google Scholar 

  177. Ghanshani S, Wulff H, Miller MJ, et al. Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem. 2000; 275:37137– 49.

    CAS  Google Scholar 

  178. Wittkindt O, Jauch A, Burgert E, et al. The human small conductance calcium-regulated potassium channel gene (hSKCa3) contains two CAG repeats in exon 1, is on chromosome 1q21.3, and shows a possible association with schizophrenia. Neurogenetics. 1998; 1:259– 65.

    Article  Google Scholar 

  179. Li T, Hu X, Chandy KG, et al. Transmission disequilibrium analysis of a triplet repeat within the hKCa3 gene using family trios with schizophrenia. Biochem Biophys Res Commun. 1998; 251:662– 65.

    Article  PubMed  CAS  Google Scholar 

  180. Antonarakis SE, Blouin J-L, Lasseter VK, et al. Lack of linkage or association between schizophrenia and the polymorphic trinucleotide repeat within the KCNN3 gene on chromosome 1q21. Am J Med Genet. 1999; 88:348– 51.

    Article  PubMed  CAS  Google Scholar 

  181. Austin CP, Holder DJ, Ma L, et al. Mapping of hKCa3 to chromosome 1q21 and investigation of linkage of CAG repeat polymorphism to schizophrenia. Mol Psychiatr. 1999; 4:261– 6.

    Article  CAS  Google Scholar 

  182. Joober R, Benkelfat C, Brisebois K, et al. Lack of association between the hSKCa3 channel gene CAG polymorphism and schizophrenia. Am J Med Genet. 1999; 88:154– 7.

    Article  PubMed  CAS  Google Scholar 

  183. Rohrmeier T, Putzhammer A, Schoeler A, et al. hSKCa3: no association of the polymorphic CAG repeat with bipolar affective disorder and schizophrenia. Psychiatr Genet. 1999; 9:169– 75.

    Article  PubMed  CAS  Google Scholar 

  184. Chowdari KV, Wood J, Ganguli R, et al. Lack of association between schizophrenia and a CAG repeat polymorphism of the hSKCa3 gene in a North Eastern US sample. Mol Psychiatr. 2000; 5:237– 8.

    Article  CAS  Google Scholar 

  185. Stober G, Meyer J, Nanda I, et al. hKCNN3 which maps to chromosome 1q21 is not the causative gene in periodic catatonia, a familial subtype of schizophrenia. Eur Arch Psychiatr Clin Neurosci. 2000; 250: 163– 8.

    Article  CAS  Google Scholar 

  186. Ujike H, Yamamoto A, Tanaka Y, et al. Association study of CAG repeats in the KCNN3 gene in Japanese patients with schizophrenia, schizoaffective disorder and bipolar disorder. Psychiatr Res. 2001; 101: 203– 07.

    Article  CAS  Google Scholar 

  187. Bowen T, Guy CA, Craddock N, et al. Further support for an association between a polymorphic CAG repeat in the hKCa3 gene and schizophrenia. Mol Psychiatr. 1998; 3:266– 9.

    Article  CAS  Google Scholar 

  188. Stober G, Jatzke S, Meyer J, et al. Short CAG repeats within the hSKCa3 gene associated with schizophrenia: results of a family-based study. NeuroReport. 1998; 9:3595– 9.

    Article  PubMed  CAS  Google Scholar 

  189. Dror V, Shamir E, Ghanshani S, et al. hKCa3/KCNN3 potassium channel gene: association of longer CAG repeats with schizophrenia in Israeli Ashkenazi Jews, expression in human tissues and localization to chromosome 1q21. Mol Psychiatr. 1999; 4:254– 60.

    Article  CAS  Google Scholar 

  190. Ivkovic M, Rankovic V, Tarasjev A, et al. Schizophrenia and polymorphic CAG repeats array of calcium-activated potassium channel (KCNN3) gene in Serbian population. Int J Neurosci. 2006; 116:157– 64.

    Article  PubMed  CAS  Google Scholar 

  191. Brzustowicz LM, Chow EW, Honer WG, Basset AS. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science. 2000; 288:678– 82.

    Article  PubMed  CAS  Google Scholar 

  192. Bowen T, Williams N, Norton N, et al. Mutation screening of the KCNN3 gene reveals a rare frameshift mutation. Mol Psychiatr. 2001; 6:259– 60.

    Article  CAS  Google Scholar 

  193. Miller MJ, Rauer H, Tomita H, et al. Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identifi ed in a patient with schizophrenia. J Biol Chem. 2001; 276:27753– 6.

    Article  PubMed  CAS  Google Scholar 

  194. Saleem Q, Vijayakumar M, Mutsuddi M, et al. Variation at the MJD locus in the major psychoses. Am J Med Genet. 1998; 81:440– 2.

    Article  PubMed  CAS  Google Scholar 

  195. Saleem Q, Sreevidya VS, Sudhir J, et al. Association analysis of CAG repeats at the KCNN3 locus in Indian patients with bipolar disorder and schizophrenia. Am J Med Genet. 2000; 96:744– 48.

    Article  PubMed  CAS  Google Scholar 

  196. Koronyo-Hamaoui M, Danziger Y, Frisch A, et al. Association between anorexia nervosa and the hsKCa3 gene: a family-based and case control study. Mol Psychiatr. 2002; 7:82– 5.

    Article  CAS  Google Scholar 

  197. Koronyo-Hamaoui M, Gak E, Stein D, et al. CAG repeat polymorphism within the KCNN3 gene is a signifi cant contributor to susceptibility to anorexia nervosa: a case-control study of female patients and several ethnic groups in the Israeli Jewish population. Am J Med Genet B Neuropsychiatr Genet. 2004; 131B:76– 80.

    Article  PubMed  Google Scholar 

  198. Gargus JJ. Ion channel functional candidate genes in mul-tigenic neuropsychiatric disease. BioI Psychiatr. 2006; 60:177– 85.

    Article  CAS  Google Scholar 

  199. St. Clair D, Blackwood D, Muir W, et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet. 1990; 336: 13– 16.

    Article  PubMed  CAS  Google Scholar 

  200. Millar JK, Wilson-Annan JC, Anderson S, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000; 9:1415– 23.

    Article  PubMed  CAS  Google Scholar 

  201. Millar JK, Christie S, Anderson S, et al. Genomic structure and localisation within a linkage hotspot of Disrupted In Schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol Psychiatr. 2001; 6:173– 8.

    Article  CAS  Google Scholar 

  202. Chubb JE, Bradshaw NJ, Soares DC, et al. The DISC locus in psychiatric illness. Mol Psychiatr. 2008; 13:36– 64.

    Article  CAS  Google Scholar 

  203. Ozeki Y, Tomoda T, Kleiderlein J, et al. Disrupted-in-schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc. Nat. Acad. Sci. 2003; 100: 289–94.

    Article  PubMed  CAS  Google Scholar 

  204. Hennah W, Thomson P, McQuillin A, et al. DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Mol Psychiatr. 2008 Mar 4 (in press).

    Google Scholar 

  205. Thomson PA, Wray NR, Millar JK, et al. Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatr. 2005; 10:657– 68, 616.

    Article  CAS  Google Scholar 

  206. Liu YL, Fann CS, Liu CM, et al. A single nucleotide polymorphism fi ne mapping study of chromosome 1q42.1 reveals the vulnerability genes for schizophrenia, GNPAT and DISC1: Association with impairment of sustained attention. Biol Psychiatr. 2006; 60:554– 62.

    Article  CAS  Google Scholar 

  207. Hashimoto R, Numakawa T, Ohnishi T, et al. Impact of the DISC1 Ser704Cys polymorphism on risk for major depression, brain morphology and ERK signaling. Hum Mol Genet. 2006; 15:3024– 33.

    Article  PubMed  CAS  Google Scholar 

  208. Roberts RC. Schizophrenia in translation: disrupted in schizophrenia (DISC1): integrating clinical and basic fi nd-ings. Schizophr Bull. 2007; 33:11– 15.

    Article  PubMed  Google Scholar 

  209. Zhang X, Tochigi M, Ohashi J, et al. Association study of the DISC1/TRAX locus with schizophrenia in a Japanese population. Schizophr Res. 2005; 79:175– 80.

    Article  PubMed  Google Scholar 

  210. Sawamura N, Sawamura-Yamamoto T, Ozeki Y, et al. A form of DISC1 enriched in nucleus: altered subcellular distribution in orbitofrontal cortex in psychosis and substance/ alcohol abuse. Proc. Nat. Acad. Sci. 2005; 102: 1187–92.

    Article  PubMed  CAS  Google Scholar 

  211. Hennah W, Tuulio-Henriksson A, Paunio T, et al. A haplo-type within the DISC1 gene is associated with visual memory functions in families with a high density of schizophrenia. Mol Psychiatr. 2005; 10:1097– 103.

    Article  CAS  Google Scholar 

  212. Cannon TD, Hennah W, van Erp TG, et al. Association of DISC1/TRAX haplotypes with schizophrenia, reduced pre-frontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatr. 2005; 62:1205– 13.

    Article  PubMed  CAS  Google Scholar 

  213. Mirnics K, Middleton FA, Stanwood GD, et al. Disease-specifi c changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatr. 2001; 6:293– 301.

    Article  CAS  Google Scholar 

  214. Levitt P, Ebert P, Mirnics K, et al. Making the case for a candidate vulnerability gene in schizophrenia: Convergent evidence for regulator of G-protein signaling 4 (RGS4). Biol Psychiatr. 2006; 60:534– 7.

    Article  CAS  Google Scholar 

  215. Chowdari K V, Bamne M, Wood J, et al. Linkage disequilibrium patterns and functional analysis of RGS4 polymorphisms in relation to schizophrenia. Schizophr Bull. 2008; 34:118– 26.

    Article  PubMed  Google Scholar 

  216. Campbell DB, Lange LA, Skelly T, et al. Association of RGS2 and RGS5 variants with schizophrenia symptom severity. Schizophr Res. 2008; 101:67– 75.

    Article  PubMed  Google Scholar 

  217. Chen X, Dunham C, Kendler S, et al. Regulator of G-protein signaling 4 (RGS4) gene is associated with schizophrenia in Irish high density families. Am J Med Genet B Neuropsychiatr Genet. 2004; 129B:23– 6.

    Article  PubMed  Google Scholar 

  218. Morris DW, Rodgers A, McGhee KA, et al. Confi rming RGS4 as a susceptibility gene for schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2004; 125B:50– 3.

    Article  PubMed  Google Scholar 

  219. Sobell JL, Richard C, Wirshing DA, Heston LL. Failure to confi rm association between RGS4 haplotypes and schizophrenia in Caucasians. Am J Med Genet B Neuropsychiatr Genet. 2005; 139B:23– 7.

    Article  PubMed  CAS  Google Scholar 

  220. Rizig MA, McQuillin A, Puri V, et al. Failure to confi rm genetic association between schizophrenia and markers on chromosome 1q23.3 in the region of the gene encoding the regulator of G-protein signaling 4 protein (RGS4). Am J Med Genet B Neuropsychiatr Genet. 2006; 141B: 296– 300.

    Article  PubMed  CAS  Google Scholar 

  221. Talkowski ME, Seltman H, Bassett AS, et al. Evaluation of a susceptibility gene for schizophrenia: genotype based meta-analysis of RGS4 polymorphisms from thirteen independent samples. Biol Psychiatr. 2006; 60:152– 62.

    Article  CAS  Google Scholar 

  222. Li D, He L. G72/G30 genes and schizophrenia: a systematic meta-analysis of association studies. Genetics. 2007; 175:917– 22.

    Article  PubMed  CAS  Google Scholar 

  223. Guo S, Tang W, Shi Y, et al. RGS4 polymorphisms and risk of schizophrenia: an association study in Han Chinese plus meta-analysis. Neurosci Lett. 2006; 406:122– 7.

    Article  PubMed  CAS  Google Scholar 

  224. Philibert RA, Madan A. Role of MED12 in transcription and human behavior. Pharmacogenomics 2007; 8:909– 16.

    Article  PubMed  CAS  Google Scholar 

  225. Philibert RA, Bohle P, Secrest D, et al. The association of the HOPA(12bp) polymorphism with schizophrenia in the NIMH Genetics Initiative for Schizophrenia sample. Am J Med Genet B Neuropsychiatr Genet. 2007; 144B:743– 7.

    Article  PubMed  CAS  Google Scholar 

  226. Fournier AE, GrandPré T, Gould G, Wang X, Strittmatter SM. Nogo and the Nogo-66 receptor. Prog Brain Res. 2002; 137:361– 9.

    Article  PubMed  CAS  Google Scholar 

  227. Sinibaldi L, De Luca A, Bellacchio E, et al. Mutations of the Nogo-66 receptor (RTN4R) gene in schizophrenia. Hum Mutat. 2004; 24:534– 5.

    Article  PubMed  CAS  Google Scholar 

  228. Meng J, Shi Y, Zhao X, et al. No association between the genetic polymorphisms in the RTN4R gene and schizophrenia in the Chinese population. J Neural Transm. 2007; 114:249– 54.

    Article  PubMed  CAS  Google Scholar 

  229. Hsu R, Woodroffe A, Lai WS, et al. Nogo Receptor 1 (RTN4R) as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches. PLoS ONE. 2007; 2(11):e1234.

    Article  PubMed  CAS  Google Scholar 

  230. Eastwood SL, Burnet PW, Harrison PJ. Decreased hip-pocampal expression of the susceptibility gene PPP3CC and other calcineurin subunits in schizophrenia. Biol Psychiatr. 2005; 57:702– 10.

    Article  CAS  Google Scholar 

  231. Horiuchi Y, Ishiguro H, Koga M, et al. Support for association of the PPP3CC gene with schizophrenia. Mol Psychiatr. 2007; 12:891– 3.

    Article  CAS  Google Scholar 

  232. Liu YL, Fann CS, Liu CM, et al. More evidence supports the association of PPP3CC with schizophrenia. Mol Psychiatr. 2007; 12:966– 74.

    Article  CAS  Google Scholar 

  233. Kinoshita Y, Suzuki T, Ikeda M, et al. No association with the calcineurin A gamma subunit gene (PPP3CC) haplo-type to Japanese schizophrenia. J Neural Transm. 2005; 112: 1255– 62.

    Article  PubMed  CAS  Google Scholar 

  234. Xi Z, Yu L, Shi Y, et al. No association between PPP3CC and schizophrenia in the Chinese population. Schizophr Res. 2007; 90:357– 9.

    Article  PubMed  Google Scholar 

  235. Mathieu F, Miot S, Etain B, et al. Association between the PPP3CC gene, coding for the calcineurin gamma catalytic subunit, and bipolar disorder. Behav Brain Funct. 2008; 4:2.

    Article  PubMed  CAS  Google Scholar 

  236. Fanous AH, Kendler KS. Genetic heterogeneity, modifi er genes, and quantitative phenotypes in psychiatric illness: searching for a framework. Mol Psychiatr. 2005; 10: 6–13

    Article  CAS  Google Scholar 

  237. Fanous AH, Kendler KS. Genetics of clinical features and subtypes of schizophrenia: a review of the recent literature. Curr Psychiatry Rep. 2008; 10:164– 70.

    Article  PubMed  Google Scholar 

  238. Tienari P, Sorry A, Lahti I, Narala M, et al. The Finnish adoptive family study of schizophrenia. Yale J Biol Med. 1985; 58:227.

    PubMed  CAS  Google Scholar 

  239. Oh G, Petronis A: Environmental Studies of Schizophrenia Through the Prism of Epigenetics. Schizophr Bull. 2008; 34:1122– 1129

    Article  PubMed  Google Scholar 

  240. Crow TJ. Schizophrenia as the price that homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Res Rev. 2000; 31:118– 29.

    Article  PubMed  CAS  Google Scholar 

  241. Elbers N, Geraerts E, Van Heerden J. Hallucinating consistency. theory and psychology. Sage publications 2007; Vol. 17(4): 587– 602.

    Google Scholar 

  242. Marco P.M. Boks, Stuart Leask, Jeroen K. Vermunt, René S. Kahn. The structure of psychosis revisited: The role of mood symptoms. Schizophr Res. 2007; 93:178– 85.

    Google Scholar 

  243. Kendler, K.S., Karkowski, L.M., Walsh, D. The structure of psychosis: latent class analysis of probands from the Roscommon Family Study. Arch. Gen. Psychiatr. 1998; 55:492– 9.

    Article  PubMed  CAS  Google Scholar 

  244. Williams, N.M., Green, E.K., Macgregor, S., et al. Variation at the DAOA/G30 locus infl uences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder. Arch. Gen. Psychiatr. 2006; 63:366– 73.

    Article  PubMed  CAS  Google Scholar 

  245. Craddock N. and Owen MJ. The beginning of the end for the Kraepelinian dichotomy. Br J Psychiatr. 2005; 186:364– 6.

    Article  Google Scholar 

  246. Crow TJ. The emperors of the schizophrenia polygene have no clothes. Psychol Med. 2008; 38:1681– 1685.

    Article  PubMed  CAS  Google Scholar 

  247. Dick DM, Rose RJ, Kaprio J. The next challenge for psychiatric genetics: characterizing the risk associated with identifi ed genes. Ann Clin Psychiatr. 2006; 18:223– 31.

    Article  Google Scholar 

  248. Bozina N, Medved V, Kuzman MR, et al. Association study of olanzapine-induced weight gain and therapeutic response with SERT gene polymorphisms in female schizophrenic patients. J Psychopharmacol. 2007; 21:728– 34.

    Article  PubMed  CAS  Google Scholar 

  249. Wang YC, Chen JY, Chen ML, et al. Neuregulin 3 genetic variations and susceptibility to schizophrenia in a Chinese population. Biol Psychiatr. 2008; 64:1093– 1096.

    Article  CAS  Google Scholar 

  250. McGlashan TH, Zipursky RB, Perkins D, et al. Randomized, double-blind trial of olanzapine versus placebo in patients prodromally symptomatic for psychosis. Am J Psychiatr. 2006; 163:790– 9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritsner, M.S., Susser, E. (2009). Molecular Genetics of Schizophrenia: Focus on Symptom Dimensions. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2298-1_4

Download citation

Publish with us

Policies and ethics