Skip to main content

Abstract

The DAMA project is an observatory for rare processes and it is operative deep underground at the Gran Sasso National Laboratory of the I.N.F.N. Its main apparatus is the DAMA/LIBRA set-up, consisting of ≃250 kg highly radiopure NaI(Tl) detectors. Its first results — obtained by exploiting over four annual cycles the model independent annual modulation signature for Dark Matter (DM) particles — confirm by those of the former DAMA/NaI, supporting the evidence for Dark Matter presence in the galactic halo at 8.2 σ C.L.. The DAMA/NaI and DAMA/LIBRA data, in fact, satisfy all the many peculiarities of the DM annual modulation signature. Neither systematic effects nor side reactions able to account for the observed modulation amplitude and to contemporaneously satisfy all the several requirements of the DM signature are available. Future perspectives are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bernabei et al., Phys. Lett. B 389 (1996) 757; R. Bernabei et al., Phys. Lett. B 424 (1998) 195; R. Bernabei et al., Phys. Lett. B 450 (1999) 448; P. Belli et al., Phys. Rev. D 61 (2000) 023512; R. Bernabei et al., Phys. Lett. B 480 (2000) 23; R. Bernabei et al., Phys. Lett. B 509 (2001) 197; R. Bernabei et al., Eur. Phys. J. C 23 (2002) 61; P. Belli et al., Phys. Rev. D 66 (2002) 043503.

    Article  ADS  Google Scholar 

  2. R. Bernabei et al., Il Nuovo Cim. A 112 (1999) 545.

    Article  ADS  Google Scholar 

  3. R. Bernabei et al., Eur. Phys. J. C 18 (2000) 283.

    Article  ADS  Google Scholar 

  4. R. Bernabei el al., La Rivista del Nuovo Cimento 26 n.1 (2003) 1-73.

    ADS  MathSciNet  Google Scholar 

  5. R. Bernabei et al., Int. J. Mod. Phys. D 13 (2004) 2127.

    Article  MATH  ADS  Google Scholar 

  6. R. Bernabei et al., Int. J. Mod. Phys. A 21 (2006) 1445.

    Article  MATH  ADS  Google Scholar 

  7. R. Bernabei et al., Eur. Phys. J. C 47 (2006) 263.

    Article  ADS  Google Scholar 

  8. R. Bernabei et al., Int. J. Mod. Phys. A 22 (2007) 3155.

    Article  ADS  Google Scholar 

  9. R. Bernabei et al., Eur. Phys. J. C 53 (2008) 205.

    Article  ADS  Google Scholar 

  10. R. Bernabei et al., Phys. Rev. D 77 (2008) 023506.

    Article  ADS  Google Scholar 

  11. R. Bernabei et al., Mod. Phys. Lett. A 23 (2008) 2125.

    Article  ADS  Google Scholar 

  12. R. Bernabei et al., Phys. Lett. B408 (1997) 439; P. Belli et al., Phys. Lett. B460 (1999) 236; R. Bernabei et al., Phys. Rev. Lett. 83 (1999) 4918; P. Belli et al., Phys. Rev. C60 (1999) 065501; R. Bernabei et al., Il Nuovo Cimento A112 (1999) 1541; R. Bernabei et al., Phys. Lett. B 515 (2001) 6; F. Cappella et al., Eur. Phys. J.-direct C14 (2002) 1; R. Bernabei et al., Eur. Phys. J. A 23 (2005) 7.

    ADS  Google Scholar 

  13. R. Bernabei et al., Eur. Phys. J. A 24 (2005) 51.

    Article  ADS  Google Scholar 

  14. R. Bernabei et al., Astrop. Phys. 4 (1995) 45; R. Bernabei, in the volumeThe IDentification of Dark Matter, World Sc. Pub. (1997) 574.

    Article  ADS  Google Scholar 

  15. R. Bernabei et al., Nucl. Instr. & Meth. A 592 (2008) 297.

    Article  ADS  Google Scholar 

  16. R. Bernabei et al., Eur. Phys. J. C 56 (2008) 333.

    Article  Google Scholar 

  17. P. Belli et al., Astropart. Phys. 5 (1996) 217; P. Belli et al., Nuovo Cim. C 19 (1996) 537; P. Belli et al., Phys. Lett. B 387 (1996) 222; Phys. Lett. B 389 (1996) 783 (err.); P. Belli et al., Phys. Lett. B 465 (1999) 315; P. Belli et al., Phys. Rev. D 61 (2000) 117301; R. Bernabei et al., New J. of Phys. 2 (2000) 15.1; R. Bernabei et al., Phys. Lett. B 493 (2000) 12; R. Bernabei et al., Nucl. Instrum. Meth A 482 (2002) 728; R. Bernabei et al.,Eur. Phys. J. directC11 (2001) 1; R. Bernabei et al., Phys. Lett. B 527 (2002) 182; R. Bernabei et al., Phys. Lett. B 546 (2002) 23. R. Bernabei et al., in the Volume “Beyond the Desert 2003”, Springer, Berlin (2003) 365; R. Bernabei et al., Eur. Phys. J. A 27, s01 (2006) 35.

    Article  ADS  Google Scholar 

  18. R. Bernabei et al., Phys. Lett. B 436 (1998) 379.

    Article  ADS  Google Scholar 

  19. R. Bernabei et al., Astropart. Phys. 7 (1997) 73; R. Bernabei et al., Nuovo Cim. A 110 (1997) 189; P. Belli et al., Astropart. Phys. 10 (1999) 115; P. Belli et al., Nucl. Phys. B 563 (1999) 97; R. Bernabei et al., Nucl. Phys. A 705 (2002) 29; P. Belli et al., Nucl. Instrum. Meth A 498 (2003) 352; R. Cerulli et al., Nucl. Instrum. Meth A 525 (2004) 535; R. Bernabei et al., Nucl. Instrum. Meth A 555 (2005) 270; R. Bernabei et al., Ukr. J. Phys. 51 (2006) 1037; P. Belli et al., Nucl. Phys. A 789 (2007) 15; P. Belli et al., Phys. Rev. C 76 (2007) 064603; P. Belli et al., Phys. Lett. B 658 (2008) 193; P. Belli et al., Eur. Phys. J. A 36 (2008) 167;

    Article  ADS  Google Scholar 

  20. P. Belli et al., Nucl. Instrum & Meth. A 572 (2007) 734; Nucl. Phys. A 806 (2008) 388; to appear on the Proceed. of NPAE 2008, INR-Kiev.

    Article  ADS  Google Scholar 

  21. K.A. Drukier et al., Phys. Rev. D 33 (1986) 3495; K. Freese et al., Phys. Rev. D 37 (1988) 3388.

    Article  ADS  Google Scholar 

  22. P. Belli et al., Phys. Rev. D 61 (2000) 023512.

    Article  ADS  Google Scholar 

  23. P.J.T. Leonard and S. Tremaine,Astrophys. J.353 (1990) 486; C.S. Kochanek,Astrophys. J.457 (1996) 228; K.M. Cudworth,Astron. J.99 (1990) 590

    Article  ADS  Google Scholar 

  24. D. Smith and N. Weiner,Phys. Rev. D64 (2001) 043502; D. Tucker-Smith and N. Weiner,Phys. Rev. D72 (2005) 063509.

    Article  ADS  Google Scholar 

  25. K. Freese et al. astro-ph/0309279;Phys. Rev. Lett.92 (2004) 11301.

    Article  Google Scholar 

  26. F.S. Ling, P. Sikivie and S. Wick,Phys. Rev. D70 (2004) 123503.

    Article  ADS  Google Scholar 

  27. A. Bottino, N. Fornengo, and S. Scopel,Phys. Rev. D67 (2003) 063519; A. Bottino, F. Donato, N. Fornengo, and S. Scopel,Phys. Rev. D69 (2003) 037302 andPhys. Rev. D78 (2008) 083520.

    Article  ADS  Google Scholar 

  28. R. Bernabei for DAMA coll. and A. Bottino, Nature 449 (2007) 24.

    Article  Google Scholar 

  29. R. Bernabei et al., arXiv0806.0011

    Google Scholar 

  30. P. Belli et al.,Phys. Rev. D66 (2002) 043503.

    Article  ADS  Google Scholar 

  31. R.A. Ibata et al.,Mon. Not. Roy. Astr. Soc.348 (2004) 12.

    Article  ADS  Google Scholar 

  32. R. Bernabei et al.,Nuovo Cimento A112 (1999) 1541.

    Article  ADS  Google Scholar 

  33. G. Prezeau et al.,Phys. Rev. Lett.91 (2003) 231301.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Bernabei, R. et al. (2009). First DAMA/LIBRA Results and Beyond. In: Begun, V., Jenkovszky, L.L., Polański, A. (eds) Progress in HighEnergy Physics and Nuclear Safety. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2287-5_4

Download citation

Publish with us

Policies and ethics