Skip to main content

The ANTARES Neutrino Telescope

  • Conference paper
  • 864 Accesses

Abstract

The ANTARES underwater neutrino telescope, at a depth of 2,475 m in the Mediterranean Sea, near Toulon, is taking data in its final configuration of 12 detection lines. Each line is equipped with 75 photomultipliers (PMT) housed in glass pressure spheres arranged in 25 triplets at depths between 100 and 450 m above the sea floor. The PMTs look down at 45° to have better sensitivity to the Cherenkov light from upgoing muons produced in the interactions of high energy neutrinos traversing the Earth. Such neutrinos may arrive from a variety of astrophysical sources, though the majority are atmospheric neutrinos. The data from five lines in operation in 2007 yielded a sufficient number of downgoing muons with which to study the detector performances, the vertical muon intensity and reconstruct the first upgoing neutrino induced muons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Babson et al., (DUMAND Collab.) Phys. Rev. D 42. (1990) 3613.

    Article  ADS  Google Scholar 

  2. I.A. Belolaptikov et al., (Baikal Collab.) Astropart. Phys. 7 (1997) 263.

    Article  ADS  Google Scholar 

  3. C. Amsler et al., Data Particle Book, Phys. Lett. B 667 (2008) 1.

    Article  ADS  Google Scholar 

  4. R. Abbasi et al., (AMANDA-II, IceCube Collab.) arXiv:0809.1646 (2008).

    Google Scholar 

  5. G. Aggouras et al., (NESTOR Collab.) Astropart. Phys. 23 (2005) 377.

    Article  ADS  Google Scholar 

  6. E. Migneco et al., (NEMO Collab.) Nucl. Instrum. Meth. A 588 (2008) 111.

    Article  ADS  Google Scholar 

  7. J.A. Aguilar et al., (ANTARES Collab.) Astropart. Phys. 23 (2005) 131.

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Amram et al., (ANTARES Collab.) Nucl. Instrum. Meth. A 484 (2002) 369.

    Article  ADS  Google Scholar 

  9. J.A. Aguilar et al., (ANTARES Collab.) Nucl. Instrum. Meth. A 555 (2005) 132.

    Article  ADS  Google Scholar 

  10. J.A. Aguilar et al., (ANTARES Collab.) Astropart. Phys. 26 (2006) 314.

    Article  ADS  Google Scholar 

  11. J.A. Aguilar et al., (ANTARES Collab.) Nucl. Instrum. Meth. A 581 (2007) 695.

    Article  ADS  Google Scholar 

  12. P. Amram et al., (ANTARES Collab.) Astropart. Phys. 19 (2003) 253.

    Article  ADS  Google Scholar 

  13. J.A. Aguilar et al., (ANTARES Collab.) Nucl. Instrum. Meth. A 570 (2007) 107.

    Article  ADS  Google Scholar 

  14. M. Ambrosio et al., Phys. Rev. D 60 (1999) 082002.

    Article  ADS  Google Scholar 

  15. M. Ambrosio et al., Eur. Phys. J. C 25 (2002) 511.

    Article  ADS  Google Scholar 

  16. S. Balestra et al., (SLIM Collab.) arXiv: 0801.4913 [hep-ex].

    Google Scholar 

  17. S. Cecchini et al., arXiv: 0805.1797 [hep-ex].

    Google Scholar 

  18. M. Ambrosio et al., Phys. Lett. B 434 (1998) 451; Phys. Lett. B 517 (2001) 59.

    Article  ADS  Google Scholar 

  19. G. Battistoni et al., Phys. Lett. B 615 (2005) 14.

    Article  ADS  Google Scholar 

  20. P. Bagley et al., (KM3NeT Collab.) http://km3net.org/CDR/CDR-KM3NeT.pdf.

    Google Scholar 

  21. M. Ageron et al., Performance of the first ANTARES line, to be published.

    Google Scholar 

  22. M. Crouch, Proc. 20th Int. Cosmic Ray Conf., Moscow, 6 (1987) 165.

    Google Scholar 

  23. Y.M. Andreev et al., (Baksan Collab.) 20th ICRC, Moscow, 6 (1987) 200.

    Google Scholar 

  24. M. Aglietta et al., (LVD Collab.) Astropart. Phys. 3 (1995) 311.

    Article  ADS  Google Scholar 

  25. M. Ambrosio et al., (MACRO Collab.) Phys. Rev. D 52 (1995) 3793.

    Article  ADS  Google Scholar 

  26. Ch. Berger et al., (Frejus Collab.) Phys. Rev. D 40 (1989) 2163.

    Article  ADS  Google Scholar 

  27. C. Waltham et al., (SNO Collab.) Proc. 27th ICRC, Hamburg, (2001) 991.

    Google Scholar 

  28. E. Andres et al., Astropart. Phys. 13 (2000) 1.

    Article  ADS  Google Scholar 

  29. I.A. Belolaptikov et al., Astropart. Phys. 7 (1997) 263.

    Article  ADS  Google Scholar 

  30. J. Babson et al., Phys. Rev. D 42 (1990) 41.

    Article  Google Scholar 

  31. M. Ageron et al., Angular distribution of atmospheric muons measured with 5 lines.

    Google Scholar 

  32. Y. Becherini et al., Astropart. Phys. 25 (2006) 1.

    Article  ADS  Google Scholar 

  33. J. Horandel et al., Astropart. Phys. 19 (2003) 193.

    Article  ADS  Google Scholar 

  34. G. Carminati et al., arXiv: 0802.0562 [physics ins -det].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Giacomelli, G. (2009). The ANTARES Neutrino Telescope. In: Begun, V., Jenkovszky, L.L., Polański, A. (eds) Progress in HighEnergy Physics and Nuclear Safety. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2287-5_13

Download citation

Publish with us

Policies and ethics