Skip to main content

Projections of Climate Change over Non-boreal East Europe During First Half of Twenty-First Century According to Results of a Transient RCM Experiment

  • Conference paper
Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-boreal Eastern Europe

Climate change trends over the southern east-Europe are evaluated according to results of a climate simulation experiment with the ICTP RegCM3 regional climate model driven from the lateral boundaries by results of ECHAM5/MPI-OM1 transient climate simulation from 1960 to 2060 (SRES A1B emission scenario after 2001). The trends projected include — precipitation: winter and spring — rise over the central east-Europe and drop over the eastern Mediterranean region, summer-autumn — drop over east-Europe and northern eastern-Mediterranean, rise over the Middle East (especially in autumn); 2-m air temperature: winter and spring — rise over the whole region with a maximum over its eastern and north-eastern (especially) and south-eastern parts, summer — rise with a maximum over the Middle East and minimum over north-eastern part, autumn — rise with maximum over the Caspian, Black Seas and northern areas of the European Territory of Russia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Caya D, Biner S (2004) Internal variability of RCM simulations over an annual cycle. Climate Dynamics, 22: 33–46.

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2003) Climate modelling: severe summertime flooding in Europe. Nature 421: 805–806.

    Article  Google Scholar 

  • Davies HC, Turner RE (1977) Updating prediction models by dynamical relaxation: An examination of the technique, Quart. J. Roy. Meteorol. Soc., 103: 225–245.

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-Atmosphere Transfer Scheme (BATS) version 1E as coupled to the NCAR Community Climate Model, Tech. Rep. TN-387+STR, NCAR, Boulder, Colorado, 72 p.

    Google Scholar 

  • Fritsch JM, Chapell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmosph. Sci. 37: 1722–1733.

    Article  Google Scholar 

  • Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation, Geophys. Res. Lett, 33, L03706, doi:10.1029/2005GL024954.

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004) Mean, interannual variability and trends in a regional climate change experiment over Europe. II. Climate change scenarios (2071–2100), Climate Dynamics, 23: 839–858.

    Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Wea. Rev, 121: 764–787.

    Article  Google Scholar 

  • Holtslag AAM, de Bruijn EIF, Pan HL (1990) A high resolution air mass transformation model for short-range weather forecasting, Mon Wea Rev, 118: 1561–1575.

    Article  Google Scholar 

  • IPCC (2007) Climate change — the physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, UK/New York, USA, 996 pp.

    Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3), Tech. Rep. TN-420+STR, NCAR, Boulder, Colorado, 152 p.

    Google Scholar 

  • Krichak SO (2008) Regional climate model simulation of present-day regional climate over European part of Russia with RegCM3. Russian Meteorology and Hydrology, 1: 31–41. (http://springerlink.com/content/120692/?p=b1704f828c724ceebc32cbb88bc4cd15&pi=0)

    Google Scholar 

  • Krichak SO, Alpert P, Bassat K, Kunin P (2007) The surface climatology of the eastern Mediterranean region obtained in a three-member ensemble climate change simulation experiment. Advances in Geosciences, 12: 67–80. (www.adv-geosci.net/12/67/2007)

    Article  Google Scholar 

  • Mitchell TD, Co-authors (2004) A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001– 2100), Tyndall Centre Working Paper No. 55., Tyndall Centre for Climate Change Research, University of East Anglia, Norwich, UK.

    Google Scholar 

  • Pal JS, Giorgi F, Bi X, Co-authors (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bulletin of the American Meteorological Society, 88: 1395–1409.

    Article  Google Scholar 

  • Roeckner E, Co-authors (2003) The atmospheric general circulation model ECHAM5, Part I, Max-Plank Inst for Meteorology, Report no. 349, 127 p.

    Google Scholar 

  • Semmler T, Jacob D (2004) Modeling extreme precipitation events — a climate change simulation for Europe. Global and Planetary Change, 44: 119–127.

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11: 2628– 2644.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krichak, S.O., Alpert, P., Kunin, P. (2009). Projections of Climate Change over Non-boreal East Europe During First Half of Twenty-First Century According to Results of a Transient RCM Experiment. In: Groisman, P.Y., Ivanov, S.V. (eds) Regional Aspects of Climate-Terrestrial-Hydrologic Interactions in Non-boreal Eastern Europe. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2283-7_7

Download citation

Publish with us

Policies and ethics