Skip to main content

Neural Progenitors

  • Chapter
Book cover Human Adult Stem Cells

Part of the book series: Human Cell Culture ((HUCC,volume 7))

Abstract

Several derivation techniques have been published [1–11] describing both free floating aggregate and adherent human NSC/NPC cultures under a variety of growth factor regimes [3, 12–45]. We describe here, a detailed reproducible methodology for the successful isolation, expansion, and preservation of bona fide human fetal (10–24 weeks) NPC that relies on a specific temporal combination of mitogenic growth factors (EGF, bFGF, and LIF) and is independent of whether cells are cultured adherent or as aggregates. We have implemented strict selection and expansion criteria to further exclude more restricted cellular phenotypes from the stem/progenitor pool during the initial derivation procedure. Selection criteria ensure that cells fulfill both an operational definition of a stem cell as well as retain engraftability in multiple experimental models. For simplicity sake, we will refrain from the stem vs. progenitor debate [46-51] and simply refer to both neural stem and progenitor cells as NPCs from here forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ray J, Raymon HK, Gage FH. Generation and culturing of precursor cells and neuroblasts from embryonic and adult central nervous system. Methods Enzymol. 1995;254:20–37.

    PubMed  CAS  Google Scholar 

  2. Gage FH, Ray J, Fisher LJ. Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci. 1995;18:159–92.

    PubMed  CAS  Google Scholar 

  3. Svendsen CN, Caldwell MA, Ostenfeld T. Human neural stem cells: isolation, expansion and transplantation. Brain Pathol. 1999 July;9(3):499–513.

    PubMed  CAS  Google Scholar 

  4. Wu YY, Mujtaba T, Rao MS. Isolation of stem and precursor cells from fetal tissue. Methods Mol Biol. 2002;198:29–40.

    PubMed  Google Scholar 

  5. Walsh K, Megyesi J, Hammond R. Human central nervous system tissue culture: a historical review and examination of recent advances. Neurobiol Dis. 2005 February;18(1):2–18.

    PubMed  CAS  Google Scholar 

  6. Rajan P, Snyder E. Neural stem cells and their manipulation. Methods Enzymol. 2006;419:23–52.

    PubMed  CAS  Google Scholar 

  7. Pollard SM, Benchoua A, Lowell S. Neural stem cells, neurons, and glia. Methods Enzymol. 2006;418:151–69.

    PubMed  CAS  Google Scholar 

  8. De Filippis L, Lamorte G, Snyder EY, Malgaroli A, Vescovi AL. A novel, immortal, and multipotent human neural stem cell line generating functional neurons and oligodendrocytes. Stem Cells. 2007 September;25(9):2312–21.

    PubMed  Google Scholar 

  9. Nethercott H, Maxwell H, Schwartz PH. Neural Progenitor Cell Culture. In: Loring JF, Wesselschmidt RL, Schwartz PH (eds). Human Stem Cell Manual: A Laboratory Guide. 1st ed. New York: Elsevier Academic Press, 2007:309–31.

    Google Scholar 

  10. Singec I, Quinones-Hinojosa A. Neurospheres. In: Gage FH, Kempermann G, Song H (eds). Adult Neurogenesis. New York: Cold Spring Harbor Press, 2008:119–34.

    Google Scholar 

  11. Ray J. Monolayer Cultures of Neural Stem/Progenitor Cells. In: Gage FH, Kempermann G, Song H (eds). Adult Neurogenesis. New York: Cold Spring Harbor Press, 2008:135–57.

    Google Scholar 

  12. Kirschenbaum B, Nedergaard M, Preuss A, Barami K, Fraser RA, Goldman SA. In vitro neuronal production and differentiation by precursor cells derived from the adult human forebrain. Cereb Cortex. 1994 November–December;4(6):576–89.

    PubMed  CAS  Google Scholar 

  13. Buc-Caron MH. Neuroepithelial progenitor cells explanted from human fetal brain proliferate and differentiate in vitro. Neurobiol Dis. 1995 February;2(1):37–47.

    PubMed  CAS  Google Scholar 

  14. Chalmers-Redman RM, Priestley T, Kemp JA, Fine A. In vitro propagation and inducible differentiation of multipotential progenitor cells from human fetal brain. Neuroscience. 1997 February;76(4):1121–8.

    PubMed  CAS  Google Scholar 

  15. Sah DW, Ray J, Gage FH. Bipotent progenitor cell lines from the human CNS. Nat Biotechnol. 1997 June;15(6):574–80.

    PubMed  CAS  Google Scholar 

  16. Moyer MP, Johnson RA, Zompa EA, Cain L, Morshed T, Hulsebosch CE. Culture, expansion, and transplantation of human fetal neural progenitor cells. Transplant Proc. 1997 June;29(4):2040–1.

    PubMed  CAS  Google Scholar 

  17. Svendsen CN, ter Borg MG, Armstrong RJ, et al. A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods. 1998 December 1;85(2):141–52.

    PubMed  CAS  Google Scholar 

  18. Flax JD, Aurora S, Yang C, et al. Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol. 1998 November;16(11):1033–9.

    PubMed  CAS  Google Scholar 

  19. Carpenter MK, Cui X, Hu ZY, et al. In vitro expansion of a multipotent population of human neural progenitor cells. Exp Neurol. 1999 August;158(2):265–78.

    PubMed  CAS  Google Scholar 

  20. Kukekov VG, Laywell ED, Suslov O, et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol. 1999 April;156(2):333–44.

    PubMed  CAS  Google Scholar 

  21. Vescovi AL, Gritti A, Galli R, Parati EA. Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neurotrauma. 1999 August;16(8):689–93.

    PubMed  CAS  Google Scholar 

  22. Vescovi AL, Parati EA, Gritti A, et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol. 1999 March;156(1):71–83.

    PubMed  CAS  Google Scholar 

  23. Villa A, Snyder EY, Vescovi A, Martinez-Serrano A. Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp Neurol. 2000 January;161(1):67–84.

    PubMed  CAS  Google Scholar 

  24. Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000 December 19;97(26):14720–5.

    PubMed  CAS  Google Scholar 

  25. Roy NS, Benraiss A, Wang S, et al. Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J Neurosci Res. 2000 February 1;59(3):321–31.

    PubMed  CAS  Google Scholar 

  26. Piper DR, Mujtaba T, Rao MS, Lucero MT. Immunocytochemical and physiological characterization of a population of cultured human neural precursors. J Neurophysiol. 2000 July;84(1):534–48.

    PubMed  CAS  Google Scholar 

  27. Piper DR, Mujtaba T, Keyoung H, et al. Identification and characterization of neuronal precursors and their progeny from human fetal tissue. J Neurosci Res. 2001 November 1;66(3):356–68.

    PubMed  CAS  Google Scholar 

  28. Keyoung HM, Roy NS, Benraiss A, et al. High-yield selection and extraction of two promoter-defined phenotypes of neural stem cells from the fetal human brain. Nat Biotechnol. 2001 September;19(9):843–50.

    PubMed  CAS  Google Scholar 

  29. Arsenijevic Y, Villemure JG, Brunet JF, et al. Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol. 2001 July;170(1):48–62.

    PubMed  CAS  Google Scholar 

  30. Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH. Cell culture. Progenitor cells from human brain after death. Nature. 2001 May 3;411(6833):42–3.

    PubMed  CAS  Google Scholar 

  31. Ourednik V, Ourednik J, Flax JD, et al. Segregation of human neural stem cells in the developing primate forebrain. Science (New York). 2001 September 7;293(5536):1820–4.

    CAS  Google Scholar 

  32. Ostenfeld T, Joly E, Tai YT, et al. Regional specification of rodent and human neurospheres. Brain Res Dev Brain Res. 2002 March 31;134(1–2):43–55.

    PubMed  CAS  Google Scholar 

  33. Laywell ED, Kukekov VG, Suslov O, Zheng T, Steindler DA. Production and analysis of neurospheres from acutely dissociated and postmortem CNS specimens. Methods Mol Biol. 2002;198:15–27.

    PubMed  Google Scholar 

  34. Tamaki S, Eckert K, He D, et al. Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J Neurosci Res. 2002 September 15;69(6):976–86.

    PubMed  CAS  Google Scholar 

  35. Cai J, Wu Y, Mirua T, et al. Properties of a fetal multipotent neural stem cell (NEP cell). Dev Biol. 2002 November 15;251(2):221–40.

    PubMed  CAS  Google Scholar 

  36. Nunes MC, Roy NS, Keyoung HM, et al. Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med. 2003 April;9(4):439–47.

    PubMed  CAS  Google Scholar 

  37. Schwartz PH, Bryant PJ, Fuja TJ, Su H, O’Dowd DK, Klassen H. Isolation and characterization of neural progenitor cells from post-mortem human cortex. J Neurosci Res. 2003 December 15;74(6):838–51.

    PubMed  CAS  Google Scholar 

  38. Zhang H, Zhao Y, Zhao C, Yu S, Duan D, Xu Q. Long-term expansion of human neural progenitor cells by epigenetic stimulation in vitro. Neurosci Res. 2005 February;51(2):157–65.

    PubMed  Google Scholar 

  39. Li X, Xu J, Bai Y, et al. Isolation and characterization of neural stem cells from human fetal striatum. Biochem Biophys Res Commun. 2005 January 14;326(2):425–34.

    PubMed  CAS  Google Scholar 

  40. Conti L, Pollard SM, Gorba T, et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 2005 September;3(9):e283.

    PubMed  Google Scholar 

  41. Yin XJ, Ju R, Feng ZC. Experimental study on growth, proliferation and differentiation of neural stem cell from subventricular zone of human fetal brain at different gestational age. Zhonghua Er Ke Za Zhi. 2006 July;44(7):500–4.

    PubMed  Google Scholar 

  42. Kim HT, Kim IS, Lee IS, Lee JP, Snyder EY, Park KI. Human neurospheres derived from the fetal central nervous system are regionally and temporally specified but are not committed. Exp Neurol. 2006 May;199(1):222–35.

    PubMed  CAS  Google Scholar 

  43. Pollard SM, Conti L, Sun Y, Goffredo D, Smith A. Adherent neural stem (NS) cells from fetal and adult forebrain. Cereb Cortex. 2006 July;16 Suppl 1:i112–20.

    Google Scholar 

  44. Kallur T, Darsalia V, Lindvall O, Kokaia Z. Human fetal cortical and striatal neural stem cells generate region-specific neurons in vitro and differentiate extensively to neurons after intrastriatal transplantation in neonatal rats. J Neurosci Res. 2006 December;84(8):1630–44.

    PubMed  CAS  Google Scholar 

  45. Redmond DE, Jr., Bjugstad KB, Teng YD, et al. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A. 2007 July 17;104(29):12175–80.

    PubMed  CAS  Google Scholar 

  46. Vescovi AL, Snyder EY. Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol. 1999 July;9(3):569–98.

    PubMed  CAS  Google Scholar 

  47. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol. 2001;17:387–403.

    PubMed  CAS  Google Scholar 

  48. Anderson DJ. Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron. 2001 April;30(1):19–35.

    PubMed  CAS  Google Scholar 

  49. Seaberg RM, van der Kooy D. Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci. 2003 March;26(3):125–31.

    PubMed  CAS  Google Scholar 

  50. Parker MA, Anderson JK, Corliss DA, et al. Expression profile of an operationally-defined neural stem cell clone. Exp Neurol. 2005 August;194(2):320–32.

    PubMed  CAS  Google Scholar 

  51. Navarro-Galve B, Martinez-Serrano A. “Is there any need to argue…” about the nature and genetic signature of in vitro neural stem cells? Exp Neurol. 2006 May;199(1):20–5.

    PubMed  CAS  Google Scholar 

  52. Streeter G. Carnegie Institution of Washington Publications. 1942;30:211–45.

    Google Scholar 

  53. Streeter G. Carnegie Institution of Washington Publications. 1948;32:133–203.

    Google Scholar 

  54. O’Rahilly R. Guide to the staging of human embryos. Anat Anz. 1972;130(5):556–9.

    PubMed  Google Scholar 

  55. Muller F, O’Rahilly R. The first appearance of the major divisions of the human brain at stage 9. Anat Embryol (Berl). 1983;168(3):419–32.

    CAS  Google Scholar 

  56. O’Rahilly R, Muller F, Hutchins GM, Moore GW. Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. Am J Anat. 1984 November;171(3):243–57.

    PubMed  Google Scholar 

  57. O’Rahilly R. Human embryo. Nature. 1987 October 1–7;329(6138):385.

    PubMed  Google Scholar 

  58. Muller F, O’Rahilly R. The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol (Berl). 1987;176(4):413–30.

    CAS  Google Scholar 

  59. Muller F, O’Rahilly R. The development of the human brain from a closed neural tube at stage 13. Anat Embryol (Berl). 1988;177(3):203–24.

    CAS  Google Scholar 

  60. Muller F, O’Rahilly R. The human brain at stage 17, including the appearance of the future olfactory bulb and the first amygdaloid nuclei. Anat Embryol (Berl). 1989;180(4):353–69.

    CAS  Google Scholar 

  61. Hanaway J. The Brain Atlas: A Visual Guide to the Human Central Nervous System. Bethseda, MD: Fitzgerald Science Inc.; 1998.

    Google Scholar 

  62. Muller F, O’Rahilly R. The human brain at stages 21–23, with particular reference to the cerebral cortical plate and to the development of the cerebellum. Anat Embryol (Berl). 1990;182(4):375–400.

    CAS  Google Scholar 

  63. Muller F, O’Rahilly R. The human brain at stages 18–20, including the choroid plexuses and the amygdaloid and septal nuclei. Anat Embryol (Berl). 1990;182(3):285–306.

    CAS  Google Scholar 

  64. O’Rahilly R, Muller F. Ventricular system and choroid plexuses of the human brain during the embryonic period proper. Am J Anat. 1990 December;189(4):285–302.

    PubMed  Google Scholar 

  65. O’Rahilly R, Muller F. Minireview: summary of the initial development of the human nervous system. Teratology. 1999 July;60(1):39–41.

    PubMed  Google Scholar 

  66. Degani S. Fetal biometry: clinical, pathological, and technical considerations. Obstet Gynecol Surv. 2001 March;56(3):159–67.

    PubMed  CAS  Google Scholar 

  67. O’Rahilly R, Muller F. Significant features in the early prenatal development of the human brain. Ann Anat. 2008;190(2):105–18.

    PubMed  Google Scholar 

  68. Nazarian LN, Halpern EJ, Kurtz AB, Hauck WW, Needleman L. Normal interval fetal growth rates based on obstetrical ultrasonographic measurements. J Ultrasound Med. 1995 November;14(11):829–36.

    PubMed  CAS  Google Scholar 

  69. Doubilet PM, Benson CB, Nadel AS, Ringer SA. Improved birth weight table for neonates developed from gestations dated by early ultrasonography. J Ultrasound Med. 1997 April;16(4):241–9.

    PubMed  CAS  Google Scholar 

  70. Sherer DM. First trimester ultrasonography of multiple gestations: a review. Obstet Gynecol Surv. 1998 November;53(11):715–26.

    PubMed  CAS  Google Scholar 

  71. Usher R, McLean F, Scott KE. Judgment of fetal age. II. Clinical significance of gestational age and an objective method for its assessment. Pediatr Clin North Am. 1966 August;13(3):835–62 contd.

    PubMed  CAS  Google Scholar 

  72. Iffy L, Shepard TH, Jakobovits A, Lemire RJ, Kerner P. The rate of growth in young human embryos of Streeter’s horizons. 13 to 23. Acta Anat (Basel). 1967;66(2):178–86.

    CAS  Google Scholar 

  73. Usher R, McLean F. Intrauterine growth of live-born Caucasian infants at sea level: standards obtained from measurements in 7 dimensions of infants born between 25 and 44 weeks of gestation. J Pediatr. 1969 June;74(6):901–10.

    PubMed  CAS  Google Scholar 

  74. Drumm JE, O’Rahilly R. The assessment of prenatal age from the crown-rump length determined ultrasonically. Am J Anat. 1977 April;148(4):555–60.

    PubMed  CAS  Google Scholar 

  75. Englund M. A Color Atlas of Life Before Birth: Normal Fetal Development. Chicago, IL: Year Book Medical Publishers Inc.; 1990.

    Google Scholar 

  76. Schats R, Van Os HC, Jansen CA, Wladimiroff JW. The crown-rump length in early human pregnancy: a reappraisal. Br J Obstet Gynaecol. 1991 May;98(5):460–2.

    PubMed  CAS  Google Scholar 

  77. Hadlock FP, Shah YP, Kanon DJ, Lindsey JV. Fetal crown-rump length: reevaluation of relation to menstrual age (5–18 weeks) with high-resolution real-time US. Radiology. 1992 February;182(2):501–5.

    PubMed  CAS  Google Scholar 

  78. Medline Plus T. Medical Encyclopedia: Fetal Development <http://www.nlm.nih.gov/medlineplus/ency/article/002398.htm>. Accessed.

  79. my3dvideos. Development of Fetus <http://www.youtube.com/watch?v=aR-Qa_LD2m4&feature=related>. Accessed January 17, 2007.

  80. makana116. Fetal Development <http://www.youtube.com/watch?v=RS1ti23SUSw&feature=related>. Accessed July 28, 2007.

  81. Brewer GJ. Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res. 1995 December;42(5):674–83.

    PubMed  CAS  Google Scholar 

  82. Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods. 1997 February;71(2):143–55.

    PubMed  CAS  Google Scholar 

  83. Hazel T. Culture of Neuroepithelial Stem Cells. In: McKay R, Gerfen C (eds). Current Protocols in Neuroscience. New York: John Wiley & Sons, 1997.

    Google Scholar 

  84. Brewer GJ, Torricelli JR, Evege EK, Price PJ. Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res. 1993 August 1;35(5):567–76.

    PubMed  CAS  Google Scholar 

  85. Svendsen CN, Fawcett JW, Bentlage C, Dunnett SB. Increased survival of rat EGF-generated CNS precursor cells using B27 supplemented medium. Exp Brain Res. 1995;102(3):407–14.

    PubMed  CAS  Google Scholar 

  86. Gritti A, Galli R, Vescovi AL. Cultures of Stem Cells in the Central Nervous System. In: A FSaR (ed). Protocols for Neural Cell Culture. 3rd ed. Totowa, NJ: Humana Press, 2001:173–97.

    Google Scholar 

  87. Price PJ, Brewer GJ. Serum-Free Medium for Neural Cell Culture. In: Federaff S, Richardson A (eds). Protocols for Neural Cell Culture. 3rd ed. Totowa, NJ: Humana Press, 2001:255–64.

    Google Scholar 

  88. Brewer GJ, Torricelli JR. Isolation and culture of adult neurons and neurospheres. Nat Protoc. 2007 06//print;2(6):1490–8.

    Google Scholar 

  89. Caldwell MA, Garcion E, terBorg MG, He X, Svendsen CN. Heparin stabilizes FGF-2 and modulates striatal precursor cell behavior in response to EGF. Exp Neurol. 2004 August;188(2):408–20.

    PubMed  CAS  Google Scholar 

  90. Balaci L, Presta M, Ennas MG, et al. Differential expression of fibroblast growth factor receptors by human neurones, astrocytes and microglia. Neuroreport. 1994 December 30;6(1):197–200.

    PubMed  CAS  Google Scholar 

  91. Richard C, Liuzzo JP, Moscatelli D. Fibroblast growth factor-2 can mediate cell attachment by linking receptors and heparan sulfate proteoglycans on neighboring cells. J Biol Chem. 1995 October 13;270(41):24188–96.

    PubMed  CAS  Google Scholar 

  92. Richard C, Roghani M, Moscatelli D. Fibroblast growth factor (FGF)-2 mediates cell attachment through interactions with two FGF receptor-1 isoforms and extracellular matrix or cell-associated heparan sulfate proteoglycans. Biochem Biophys Res Commun. 2000;276:399–405.

    PubMed  CAS  Google Scholar 

  93. Moore KL, Persaud TVN. The Fetal Period: The Ninth Week to Birth. In: Persaud Ma (ed). The Developing Human: Clinically Oriented Embryology. 5th ed. Philadelphia, PA: WB Saunders, 1993:93–112.

    Google Scholar 

  94. Wakeman DR, Hofmann MR, Redmond Jr. DE, Snyder EY. Preparation, Manipulation, and Transplantation of Human Fetal Neural Stem Cells (Unit 2.D) Current Protocols in Stem Cell Biology. New York: Wiley, 2009.

    Google Scholar 

  95. Kanemura Y, Mori H, Nakagawa A, et al. In vitro screening of exogenous factors for human neural stem/progenitor cell proliferation using measurement of total ATP content in viable cells. Cell Transplant. 2005;14(9):673–82.

    PubMed  Google Scholar 

  96. Temple S. The development of neural stem cells. Nature. 2001 November;414(6859):112–7.

    PubMed  CAS  Google Scholar 

  97. Kitchens DL, Snyder EY, Gottlieb DI. FGF and EGF are mitogens for immortalized neural progenitors. J Neurobiol. 1994 July;25(7):797–807.

    PubMed  CAS  Google Scholar 

  98. Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci. 1991 (03/60);14(1):453–501.

    PubMed  CAS  Google Scholar 

  99. Biebl M, Cooper CM, Winkler J, Kuhn HG. Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett. 2000 September 8;291(1):17–20.

    PubMed  CAS  Google Scholar 

  100. Rakic S, Zecevic N. Programmed cell death in the developing human telencephalon. Eur J Neurosci. 2000 August;12(8):2721–34.

    PubMed  CAS  Google Scholar 

  101. Reynolds BA, Tetzlaff W, Weiss S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci. 1992 November;12(11):4565–74.

    PubMed  CAS  Google Scholar 

  102. Svendsen CN, Clarke DJ, Rosser AE, Dunnett SB. Survival and differentiation of rat and human epidermal growth factor-responsive precursor cells following grafting into the lesioned adult central nervous system. Exp Neurol. 1996 February;137(2):376–88.

    PubMed  CAS  Google Scholar 

  103. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996 April 10;175(1):1–13.

    PubMed  CAS  Google Scholar 

  104. Rosser AE, Tyers P, ter Borg M, Dunnett SB, Svendsen CN. Co-expression of MAP-2 and GFAP in cells developing from rat EGF responsive precursor cells. Brain Res Dev Brain Res. 1997 February 20;98(2):291–5.

    PubMed  CAS  Google Scholar 

  105. Morrison RS, Sharma A, de Vellis J, Bradshaw RA. Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture. Proc Natl Acad Sci U S A. 1986 October;83(19):7537–41.

    PubMed  CAS  Google Scholar 

  106. Walicke P, Cowan WM, Ueno N, Baird A, Guillemin R. Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc Natl Acad Sci U S A. 1986 May;83(9):3012–6.

    PubMed  CAS  Google Scholar 

  107. Gensburger C, Labourdette G, Sensenbrenner M. Brain basic fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro. FEBS Lett. 1987 June 8;217(1):1–5.

    PubMed  CAS  Google Scholar 

  108. Perraud F, Besnard F, Pettmann B, Sensenbrenner M, Labourdette G. Effects of acidic and basic fibroblast growth factors (aFGF and bFGF) on the proliferation and the glutamine synthetase expression of rat astroblasts in culture. Glia. 1988;1(2):124–31.

    PubMed  CAS  Google Scholar 

  109. Walicke PA. Basic and acidic fibroblast growth factors have trophic effects on neurons from multiple CNS regions. J Neurosci. 1988 July;8(7):2618–27.

    PubMed  CAS  Google Scholar 

  110. Walicke PA, Baird A. Trophic effects of fibroblast growth factor on neural tissue. Prog Brain Res. 1988;78:333–8.

    PubMed  CAS  Google Scholar 

  111. Murphy M, Drago J, Bartlett PF. Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro. J Neurosci Res. 1990 April;25(4):463–75.

    PubMed  CAS  Google Scholar 

  112. Deloulme JC, Baudier J, Sensenbrenner M. Establishment of pure neuronal cultures from fetal rat spinal cord and proliferation of the neuronal precursor cells in the presence of fibroblast growth factor. J Neurosci Res. 1991 August;29(4):499–509.

    PubMed  CAS  Google Scholar 

  113. Drago J, Murphy M, Carroll SM, Harvey RP, Bartlett PF. Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I. Proc Natl Acad Sci U S A. 1991 March 15;88(6):2199–203.

    PubMed  CAS  Google Scholar 

  114. Drago J, Nurcombe V, Pearse MJ, Murphy M, Bartlett PF. Basic fibroblast growth factor upregulates steady-state levels of laminin B1 and B2 chain mRNA in cultured neuroepithelial cells. Exp Cell Res. 1991 October;196(2):246–54.

    PubMed  CAS  Google Scholar 

  115. Bernfield M, Kokenyesi R, Kato M, et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol. 1992;8:365–93.

    PubMed  CAS  Google Scholar 

  116. Ray J, Gage FH. Spinal cord neuroblasts proliferate in response to basic fibroblast growth factor. J Neurosci. 1994 June;14(6):3548–64.

    PubMed  CAS  Google Scholar 

  117. Palmer TD, Ray J, Gage FH. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci. 1995 October;6(5):474–86.

    PubMed  CAS  Google Scholar 

  118. Vicario-Abejon C, Johe KK, Hazel TG, Collazo D, McKay RDG. Functions of basic fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron. 1995;15:105–14.

    PubMed  CAS  Google Scholar 

  119. Ghosh A, Greenberg ME. Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron. 1995 July;15(1):89–103.

    PubMed  CAS  Google Scholar 

  120. Gritti A, Parati EA, Cova L, et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci. 1996 February 1;16(3):1091–100.

    PubMed  CAS  Google Scholar 

  121. Shihabuddin LS, Ray J, Gage FH. FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp Neurol. 1997 December;148(2):577–86.

    PubMed  CAS  Google Scholar 

  122. Qian X, Davis AA, Goderie SK, Temple S. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron. 1997 January;18(1):81–93.

    PubMed  CAS  Google Scholar 

  123. Daadi M, Arcellana-Panlilio M, Weiss S. Activin co-operates with fibroblast growth factor 2 to regulate tyrosine hydroxylase expression in the basal forebrain ventricular zone progenitors. Neuroscience. 1998;86:867–80.

    PubMed  CAS  Google Scholar 

  124. Caldwell MA, Svendsen CN. Heparin, but not other proteoglycans potentiates the mitogenic effects of FGF-2 on mesencephalic precursor cells. Exp Neurol. 1998 July;152(1):1–10.

    PubMed  CAS  Google Scholar 

  125. Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH. Fibroblast Growth Factor-2 Activates a Latent Neurogenic Program in Neural Stem Cells from Diverse Regions of the Adult CNS. J Neurosci. 1999 October 1;19(19):8487–97.

    PubMed  CAS  Google Scholar 

  126. Ray J, Peterson DA, Schinstine M, Gage FH. Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc Natl Acad Sci U S A. 1993 April 15;90(8):3602–6.

    PubMed  CAS  Google Scholar 

  127. Ray J, Gage FH. Differential properties of adult rat and mouse brain-derived neural stem/progenitor cells. Mol Cell Neurosci. 2006 March;31(3):560–73.

    PubMed  CAS  Google Scholar 

  128. Kornblum HI, Raymon HK, Morrison RS, Cavanaugh KP, Bradshaw RA, Leslie FM. Epidermal growth factor and basic fibroblast growth factor: effects on an overlapping population of neocortical neurons in vitro. Brain Res. 1990 December 10;535(2):255–63.

    PubMed  CAS  Google Scholar 

  129. Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol. 1999 April 1;208(1):166–88.

    PubMed  CAS  Google Scholar 

  130. Kilpatrick TJ, Bartlett PF. Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron. 1993 February;10(2):255–65.

    PubMed  CAS  Google Scholar 

  131. Vescovi AL, Reynolds BA, Fraser DD, Weiss S. bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron. 1993 November;11(5):951–66.

    PubMed  CAS  Google Scholar 

  132. Bartlett PF, Kilpatrick TJ, Richards LJ, Talman PS, Murphy M. Regulation of the early development of the nervous system by growth factors. Pharmacol Ther. 1994;64(3):371–93.

    PubMed  CAS  Google Scholar 

  133. Kilpatrick TJ, Richards LJ, Bartlett PF. The regulation of neural precursor cells within the mammalian brain. Mol Cell Neurosci. 1995 February;6(1):2–15.

    PubMed  CAS  Google Scholar 

  134. Gritti A, Cova L, Parati EA, Galli R, Vescovi AL. Basic fibroblast growth factor supports the proliferation of epidermal growth factor-generated neuronal precursor cells of the adult mouse CNS. Neurosci Lett. 1995 February 13;185(3):151–4.

    PubMed  CAS  Google Scholar 

  135. Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci. 1997 August 1;17(15):5820–9.

    PubMed  CAS  Google Scholar 

  136. Ciccolini F, Svendsen CN. Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci. 1998 October 1;18(19):7869–80.

    PubMed  CAS  Google Scholar 

  137. Gritti A, Frolichsthal-Schoeller P, Galli R, et al. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci. 1999 May 1;19(9):3287–97.

    PubMed  CAS  Google Scholar 

  138. Kalyani AJ, Mujtaba T, Rao MS. Expression of EGF receptor and FGF receptor isoforms during neuroepithelial stem cell differentiation. J Neurobiol. 1999 February 5;38(2):207–24.

    PubMed  CAS  Google Scholar 

  139. Caldwell MA, He X, Wilkie N, et al. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat Biotechnol. 2001 May;19(5):475–9.

    PubMed  CAS  Google Scholar 

  140. Arsenijevic Y, Weiss S, Schneider B, Aebischer P. Insulin-like growth factor-i is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci. 2001 September 15;21(18):7194–202.

    PubMed  CAS  Google Scholar 

  141. Ostenfeld T, Svendsen CN. Requirement for neurogenesis to proceed through the division of neuronal progenitors following differentiation of epidermal growth factor and fibroblast growth factor-2-responsive human neural stem cells. Stem Cells. 2004 September 1;22(5):798–811.

    PubMed  CAS  Google Scholar 

  142. Tarasenko YI, Yu Y, Jordan PM, Bottenstein J, Wu P. Effect of growth factors on proliferation and phenotypic differentiation of human fetal neural stem cells. J Neurosci Res. 2004 December 1;78(5):625–36.

    PubMed  CAS  Google Scholar 

  143. Kelly CM, Tyers P, Borg Mt, Svendsen CN, Dunnett SB, Rosser AE. EGF and FGF-2 responsiveness of rat and mouse neural precursors derived from the embryonic CNS. Proceedings of the 14th and 15th Meetings of the European Network for CNS Transplantation and Repair (NECTAR). 2005 12/15;68(1–2):83–94.

    Google Scholar 

  144. Galli R, Pagano SF, Gritti A, Vescovi AL. Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Dev Neurosci. 2000;22(1–2):86–95.

    PubMed  CAS  Google Scholar 

  145. Molne M, Studer L, Tabar V, Ting YT, Eiden MV, McKay RD. Early cortical precursors do not undergo LIF-mediated astrocytic differentiation. J Neurosci Res. 2000 February 1;59(3):301–11.

    PubMed  CAS  Google Scholar 

  146. Shimazaki T, Shingo T, Weiss S. The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian forebrain neural stem cells. J Neurosci. 2001 October 1;21(19):7642–53.

    PubMed  CAS  Google Scholar 

  147. Wright LS, Li J, Caldwell MA, Wallace K, Johnson JA, Svendsen CN. Gene expression in human neural stem cells: effects of leukemia inhibitory factor. J Neurochem. 2003 July;86(1):179–95.

    PubMed  CAS  Google Scholar 

  148. Chojnacki A, Weiss S. Isolation of a novel platelet-derived growth factor-responsive precursor from the embryonic ventral forebrain. J Neurosci. 2004 December 1;24(48):10888–99.

    PubMed  CAS  Google Scholar 

  149. Gregg C, Weiss S. CNTF/LIF/gp130 receptor complex signaling maintains a VZ precursor differentiation gradient in the developing ventral forebrain. Development. 2005 February 1;132(3):565–78.

    PubMed  CAS  Google Scholar 

  150. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003 October 31;115(3):281–92.

    PubMed  CAS  Google Scholar 

  151. Bonaguidi MA, McGuire T, Hu M, Kan L, Samanta J, Kessler JA. LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development. 2005 December 15;132(24):5503–14.

    PubMed  CAS  Google Scholar 

  152. Lim DA, Huang YC, Alvarez-Buylla A. Adult Subventricular Zone and Olfactory Bulb Neurogenesis. In: Gage FH, Kempermann G, Song H (eds). Adult Neurogenesis. 52nd ed. New York: Cold Spring Harbor Press, 2008:159–74.

    Google Scholar 

  153. Perez-Iratxeta C, Palidwor G, Porter CJ, et al. Study of stem cell function using microarray experiments. FEBS Lett. 2005 March 21;579(8):1795–801.

    PubMed  CAS  Google Scholar 

  154. Shin S, Rao MS. Large-scale analysis of neural stem cells and progenitor cells. Neurodegener Dis. 2006;3(1–2):106–11.

    PubMed  Google Scholar 

  155. Luo Y, Bhattacharya B, Yang AX, Puri RK, Rao MS. Designing, testing, and validating a microarray for stem cell characterization. Methods Mol Biol. 2006;331:241–66.

    PubMed  CAS  Google Scholar 

  156. Luo Y, Schwartz C, Shin S, et al. A focused microarray to assess dopaminergic and glial cell differentiation from fetal tissue or embryonic stem cells. Stem Cells. 2006 April;24(4):865–75.

    PubMed  CAS  Google Scholar 

  157. Chang HY, Thomson JA, Chen X. Microarray analysis of stem cells and differentiation. Methods Enzymol. 2006;420:225–54.

    PubMed  CAS  Google Scholar 

  158. Anisimov SV, Christophersen NS, Correia AS, Li JY, Brundin P. “NeuroStem Chip”: a novel highly specialized tool to study neural differentiation pathways in human stem cells. BMC Genomics. 2007;8:46.

    PubMed  Google Scholar 

  159. Shin S, Sun Y, Liu Y, et al. Whole genome analysis of human neural stem cells derived from embryonic stem cells and stem and progenitor cells isolated from fetal tissue. Stem Cells. 2007 May;25(5):1298–306.

    PubMed  CAS  Google Scholar 

  160. Jacques TS, Relvas JB, Nishimura S, et al. Neural precursor cell chain migration and division are regulated through different beta1 integrins. Development. 1998 August 1;125(16):3167–77.

    PubMed  CAS  Google Scholar 

  161. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002 September 20;110(6):673–87.

    PubMed  CAS  Google Scholar 

  162. Campos LS, Leone DP, Relvas JB, et al. {beta}1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development. 2004 July 15;131(14):3433–44.

    PubMed  CAS  Google Scholar 

  163. Leone DP, Relvas JB, Campos LS, et al. Regulation of neural progenitor proliferation and survival by {beta}1 integrins. J Cell Sci. 2005 June 15;118(12):2589–99.

    PubMed  CAS  Google Scholar 

  164. Mueller F-J, Serobyan N, Schraufstatter IU, et al. Adhesive interactions between human neural stem cells and inflamed human vascular endothelium are mediated by integrins. Stem Cells. 2006 November 1;24(11):2367–72.

    PubMed  CAS  Google Scholar 

  165. Flanagan LA, Rebaza LM, Derzic S, Schwartz PH, Monuki ES. Regulation of human neural precursor cells by laminin and integrins. J Neurosci Res. 2006 April;83(5):845–56.

    PubMed  CAS  Google Scholar 

  166. Svendsen CN, Skepper J, Rosser AE, ter Borg MG, Tyres P, Ryken T. Restricted growth potential of rat neural precursors as compared to mouse. Brain Res Dev Brain Res. 1997 April 18;99(2):253–8.

    PubMed  CAS  Google Scholar 

  167. Steindler DA, Scheffler B, Laywell ED, et al. Neural Stem/Progenitor Cell Clones or “neurospheres”: A Model for Understanding Neuromorphogenesis. In: Zigova T, Snyder EY, Sanberg PR (eds). Neural Stem Cells for Brain and Spinal Cord Repair. Totowa, NJ: Humana Press, 2003:183–202.

    Google Scholar 

  168. Lobo MV, Alonso FJ, Redondo C, et al. Cellular characterization of epidermal growth factor-expanded free-floating neurospheres. J Histochem Cytochem. 2003 January;51(1):89–103.

    PubMed  Google Scholar 

  169. Bez A, Corsini E, Curti D, et al. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res. 2003;993(1–2):18–29.

    PubMed  CAS  Google Scholar 

  170. Anderson L, Burnstein RM, He X, et al. Gene expression changes in long term expanded human neural progenitor cells passaged by chopping lead to loss of neurogenic potential in vivo. Exp Neurol. 2007 April;204(2):512–24.

    PubMed  CAS  Google Scholar 

  171. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992 March 27;255(5052):1707–10.

    PubMed  CAS  Google Scholar 

  172. Rietze RL, Reynolds BA. Neural stem cell isolation and characterization. Methods Enzymol. 2006;419:3–23.

    PubMed  CAS  Google Scholar 

  173. Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell. 1992 January 10;68(1):33–51.

    PubMed  CAS  Google Scholar 

  174. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron. 1993 July;11(1):173–89.

    PubMed  CAS  Google Scholar 

  175. Levison SW, Goldman JE. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron. 1993 February;10(2):201–12.

    PubMed  CAS  Google Scholar 

  176. Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993 March 1;90(5):2074–7.

    PubMed  CAS  Google Scholar 

  177. Morshead CM, Reynolds BA, Craig CG, et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron. 1994 November;13(5):1071–82.

    PubMed  CAS  Google Scholar 

  178. Weiss S, Dunne C, Hewson J, et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci. 1996 December 1;16(23):7599–609.

    PubMed  CAS  Google Scholar 

  179. McKay R. Stem cells in the central nervous system. Science. 1997 April 4;276(5309):66–71.

    PubMed  CAS  Google Scholar 

  180. Luskin MB, Zigova T, Soteres BJ, Stewart RR. Neuronal progenitor cells derived from the anterior subventricular zone of the neonatal rat forebrain continue to proliferate in vitro and express a neuronal phenotype. Mol Cell Neurosci. 1997;8(5):351–66.

    PubMed  CAS  Google Scholar 

  181. Sanai N, Tramontin AD, Quinones-Hinojosa A, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004 February 19;427(6976):740–4.

    PubMed  CAS  Google Scholar 

  182. Howard B, Chen Y, Zecevic N. Cortical progenitor cells in the developing human telencephalon. Glia. 2006 January 1;53(1):57–66.

    PubMed  Google Scholar 

  183. Quinones-Hinojosa A, Sanai N, Soriano-Navarro M, et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol. 2006 January 20;494(3):415–34.

    PubMed  Google Scholar 

  184. Merkle FT, Mirzadeh Z, Alvarez-Buylla A. Mosaic organization of neural stem cells in the adult brain. Science. 2007 July 20;317(5836):381–4.

    PubMed  CAS  Google Scholar 

  185. Curtis MA, Kam M, Nannmark U, et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science. 2007 March 2;315(5816):1243–9.

    PubMed  CAS  Google Scholar 

  186. Quinones-Hinojosa A, Sanai N, Gonzalez-Perez O, Garcia-Verdugo JM. The human brain subventricular zone: stem cells in this niche and its organization. Neurosurg Clin N Am. 2007 January;18(1):15–20, vii.

    PubMed  Google Scholar 

  187. Singec I, Knoth R, Meyer RP, et al. Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods. 2006 October;3(10):801–6.

    PubMed  CAS  Google Scholar 

  188. Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990 December 1;110(4):1001–20.

    CAS  Google Scholar 

  189. Loeffler M, Potten CS. Stem Cells and Cellular Pedigrees – A Conceptual Introduction. In: Potten CS (ed). Stem Cells. London: Academic, 1997:1–27.

    Google Scholar 

  190. Santa-Olalla J, Baizabal JM, Fregoso M, del Carmen Cardenas M, Covarrubias L. The in vivo positional identity gene expression code is not preserved in neural stem cells grown in culture. Eur J Neurosci. 2003 September;18(5):1073–84.

    PubMed  Google Scholar 

  191. Hack MA, Sugimori M, Lundberg C, Nakafuku M, Gotz M. Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol Cell Neurosci. 2004 April;25(4):664–78.

    PubMed  CAS  Google Scholar 

  192. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000 March;182(3):311–22.

    PubMed  CAS  Google Scholar 

  193. Hall PA, Levison DA. Review: assessment of cell proliferation in histological material. J Clin Pathol. 1990 March;43(3):184–92.

    PubMed  CAS  Google Scholar 

  194. Hall PA, Levison DA, Woods AL, et al. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J Pathol. 1990 December;162(4):285–94.

    PubMed  CAS  Google Scholar 

  195. D’Amour KA, Gage FH. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc Natl Acad Sci U S A. 2003 September 30;100 Suppl 1:11866–72.

    Google Scholar 

  196. Komitova M, Eriksson PS. Sox-2 is expressed by neural progenitors and astroglia in the adult rat brain. Neurosci Lett. 2004 October 7;369(1):24–7.

    PubMed  CAS  Google Scholar 

  197. Chan C, Moore BE, Cotman CW, et al. Musashi1 antigen expression in human fetal germinal matrix development. Exp Neurol. 2006 October;201(2):515–8.

    PubMed  CAS  Google Scholar 

  198. Pixley SK, de Vellis J. Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res. 1984 August;317(2):201–9.

    PubMed  CAS  Google Scholar 

  199. Pixley SK, Kobayashi Y, de Vellis J. A monoclonal antibody against vimentin: characterization. Brain Res. 1984 August;317(2):185–99.

    PubMed  CAS  Google Scholar 

  200. Pixley SK, Kobayashi Y, de Vellis J. Monoclonal antibody to intermediate filament proteins in astrocytes. J Neurosci Res. 1984;12(4):525–41.

    PubMed  CAS  Google Scholar 

  201. Hockfield S, McKay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci. 1985 December;5(12):3310–28.

    PubMed  CAS  Google Scholar 

  202. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990 February 23;60(4):585–95.

    PubMed  CAS  Google Scholar 

  203. Dahlstrand J, Zimmerman LB, McKay RD, Lendahl U. Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments. J Cell Sci. 1992 October;103 (Pt 2):589–97.

    Google Scholar 

  204. Zimmerman L, Parr B, Lendahl U, et al. Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron. 1994 January;12(1):11–24.

    PubMed  CAS  Google Scholar 

  205. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999 June 11;97(6):703–16.

    PubMed  CAS  Google Scholar 

  206. Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci U S A. 2000 December 5;97(25):13883–8.

    PubMed  CAS  Google Scholar 

  207. Imura T, Kornblum HI, Sofroniew MV. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci. 2003 April 1;23(7):2824–32.

    PubMed  CAS  Google Scholar 

  208. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci. 2004 November;7(11):1233–41.

    PubMed  CAS  Google Scholar 

  209. Feng L, Hatten ME, Heintz N. Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron. 1994 April;12(4):895–908.

    PubMed  CAS  Google Scholar 

  210. Feng L, Heintz N. Differentiating neurons activate transcription of the brain lipid-binding protein gene in radial glia through a novel regulatory element. Development (Cambridge, England). 1995 June;121(6):1719–30.

    CAS  Google Scholar 

  211. Malatesta P, Hartfuss E, Gotz M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development (Cambridge, England). 2000 December;127(24):5253–63.

    CAS  Google Scholar 

  212. Hartfuss E, Galli R, Heins N, Gotz M. Characterization of CNS precursor subtypes and radial glia. Dev Biol. 2001 January 1;229(1):15–30.

    PubMed  CAS  Google Scholar 

  213. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci. 2001 April;2(4):287–93.

    PubMed  CAS  Google Scholar 

  214. Miyata T, Kawaguchi A, Okano H, Ogawa M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron. 2001 September 13;31(5):727–41.

    PubMed  CAS  Google Scholar 

  215. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 2001 February 8;409(6821):714–20.

    PubMed  CAS  Google Scholar 

  216. Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR. Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci. 2002 April 15;22(8):3161–73.

    PubMed  CAS  Google Scholar 

  217. Gotz M, Hartfuss E, Malatesta P. Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res Bull. 2002 April;57(6):777–88.

    PubMed  Google Scholar 

  218. Gotz M. Glial cells generate neurons – master control within CNS regions: developmental perspectives on neural stem cells. Neuroscientist. 2003 October;9(5):379–97.

    PubMed  Google Scholar 

  219. Malatesta P, Hack MA, Hartfuss E, et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron. 2003 March 6;37(5):751–64.

    PubMed  CAS  Google Scholar 

  220. Doetsch F. The glial identity of neural stem cells. Nat Neurosci. 2003 November;6(11):1127–34.

    PubMed  CAS  Google Scholar 

  221. Goldman S. Glia as neural progenitor cells. Trends Neurosci. 2003 November;26(11):590–6.

    PubMed  CAS  Google Scholar 

  222. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 2004 February;7(2):136–44.

    PubMed  CAS  Google Scholar 

  223. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A. 2004 December 14;101(50):17528–32.

    PubMed  CAS  Google Scholar 

  224. Gotz M, Barde YA. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron. 2005 May 5;46(3):369–72.

    PubMed  Google Scholar 

  225. Noctor SC, Martinez-Cerdeno V, Kriegstein AR. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol. 2008 May 1;508(1):28–44.

    PubMed  Google Scholar 

  226. Gleeson JG, Lin PT, Flanagan LA, Walsh CA. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron. 1999 June;23(2):257–71.

    PubMed  CAS  Google Scholar 

  227. Francis F, Koulakoff A, Boucher D, et al. Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron. 1999 June;23(2):247–56.

    PubMed  CAS  Google Scholar 

  228. Friocourt G, Koulakoff A, Chafey P, et al. Doublecortin functions at the extremities of growing neuronal processes. Cerebral Cortex (New York 1991). 2003 June;13(6):620–6.

    Google Scholar 

  229. Hu H, Tomasiewicz H, Magnuson T, Rutishauser U. The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron. 1996 April;16(4):735–43.

    PubMed  CAS  Google Scholar 

  230. Merkle FT, Alvarez-Buylla A. Neural stem cells in mammalian development. Curr Opin Cell Biol. 2006 December;18(6):704–9.

    PubMed  CAS  Google Scholar 

  231. Alvarez-Buylla A, Seri B, Doetsch F. Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull. 2002 April;57(6):751–8.

    PubMed  Google Scholar 

  232. Gregg CT, Chojnacki AK, Weiss S. Radial glial cells as neuronal precursors: the next generation? J Neurosci Res. 2002 September 15;69(6):708–13.

    PubMed  CAS  Google Scholar 

  233. Gregg C, Weiss S. Generation of functional radial glial cells by embryonic and adult forebrain neural stem cells. J Neurosci. 2003 December 17;23(37):11587–601.

    PubMed  CAS  Google Scholar 

  234. Pollard SM, Conti L. Investigating radial glia in vitro. Prog Neurobiol. 2007 September;83(1):53–67.

    PubMed  CAS  Google Scholar 

  235. Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972 May;145(1):61–83.

    PubMed  CAS  Google Scholar 

  236. Sidman RL, Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973 November 9;62(1):1–35.

    PubMed  CAS  Google Scholar 

  237. Levitt P, Rakic P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol. 1980 October 1;193(3):815–40.

    PubMed  CAS  Google Scholar 

  238. Levitt P, Cooper ML, Rakic P. Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci. 1981 January;1(1):27–39.

    PubMed  CAS  Google Scholar 

  239. Levitt P, Cooper ML, Rakic P. Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. Dev Biol. 1983 April;96(2):472–84.

    PubMed  CAS  Google Scholar 

  240. Caccamo D, Katsetos CD, Herman MM, Frankfurter A, Collins VP, Rubinstein LJ. Immunohistochemistry of a spontaneous murine ovarian teratoma with neuroepithelial differentiation. Neuron-associated beta-tubulin as a marker for primitive neuroepithelium. Lab Invest. 1989 March;60(3):390–8.

    PubMed  CAS  Google Scholar 

  241. Geisert EE, Jr., Frankfurter A. The neuronal response to injury as visualized by immunostaining of class III beta-tubulin in the rat. Neurosci Lett. 1989 July 31;102(2–3):137–41.

    PubMed  Google Scholar 

  242. Lee MK, Tuttle JB, Rebhun LI, Cleveland DW, Frankfurter A. The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil Cytoskeleton. 1990;17(2):118–32.

    PubMed  CAS  Google Scholar 

  243. Menezes JR, Luskin MB. Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci. 1994 September;14(9):5399–416.

    PubMed  CAS  Google Scholar 

  244. Menezes JR, Smith CM, Nelson KC, Luskin MB. The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain. Mol Cell Neurosci. 1995 December;6(6):496–508.

    PubMed  CAS  Google Scholar 

  245. Suslov ON, Kukekov VG, Ignatova TN, Steindler DA. Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci U S A. 2002 October 29;99(22):14506–11.

    PubMed  CAS  Google Scholar 

  246. Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science. 2000 September 8;289(5485):1754–7.

    PubMed  CAS  Google Scholar 

  247. Pollard SM, Wallbank R, Tomlinson S, Grotewold L, Smith A. Fibroblast growth factor induces a neural stem cell phenotype in foetal forebrain progenitors and during embryonic stem cell differentiation. Mol Cell Neurosci. 2008 July;38(3):393–403.

    PubMed  CAS  Google Scholar 

  248. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006 August 25;126(4):663–76.

    PubMed  CAS  Google Scholar 

  249. Yamanaka S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell. 2007 June 7;1(1):39–49.

    PubMed  CAS  Google Scholar 

  250. Maherali N, Sridharan R, Xie W, et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007 June 7;1(1):55–70.

    PubMed  CAS  Google Scholar 

  251. Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007 July 19;448(7151):318–24.

    PubMed  CAS  Google Scholar 

  252. Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007;2(12):3081–9.

    PubMed  CAS  Google Scholar 

  253. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 November 30;131(5):861–72.

    PubMed  CAS  Google Scholar 

  254. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007 July 19;448(7151):313–7.

    PubMed  CAS  Google Scholar 

  255. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007 October;25(10):1177–81.

    PubMed  CAS  Google Scholar 

  256. Hyun I, Hochedlinger K, Jaenisch R, Yamanaka S. New advances in iPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell. 2007 October 11;1(4):367–8.

    PubMed  CAS  Google Scholar 

  257. Lewitzky M, Yamanaka S. Reprogramming somatic cells towards pluripotency by defined factors. Curr Opin Biotechnol. 2007 October;18(5):467–73.

    PubMed  CAS  Google Scholar 

  258. Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007 December 21;318(5858):1917–20.

    PubMed  CAS  Google Scholar 

  259. Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008 January;26(1):101–6.

    PubMed  CAS  Google Scholar 

  260. Wernig M, Meissner A, Cassady JP, Jaenisch R. c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell. 2008 January 10;2(1):10–2.

    PubMed  CAS  Google Scholar 

  261. Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008 January 10;451(7175):141–6.

    PubMed  CAS  Google Scholar 

  262. Brambrink T, Foreman R, Welstead GG, et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell. 2008 February 7;2(2):151–9.

    PubMed  CAS  Google Scholar 

  263. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell. 2008 March 6;2(3):230–40.

    PubMed  CAS  Google Scholar 

  264. Yamanaka S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif. 2008 February;41 Suppl 1:51–6.

    Google Scholar 

  265. Liu SV. iPS cells: a more critical review. Stem Cells Dev. 2008 June;17(3):391–7.

    PubMed  Google Scholar 

  266. Xu Y, Shi Y, Ding S. A chemical approach to stem-cell biology and regenerative medicine. Nature. 2008 May 15;453(7193):338–44.

    PubMed  CAS  Google Scholar 

  267. Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell. 2008 June 5;2(6):525–8.

    PubMed  CAS  Google Scholar 

  268. Kim JB, Zaehres H, Wu G, et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 2008 July 31;454(7204):646–50.

    PubMed  CAS  Google Scholar 

  269. Yamanaka S. Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci. 2008 June 27;363(1500):2079–87.

    PubMed  CAS  Google Scholar 

  270. Egli D, Birkhoff G, Eggan K. Mediators of reprogramming: transcription factors and transitions through mitosis. Nat Rev Mol Cell Biol. 2008 July;9(7):505–16.

    PubMed  CAS  Google Scholar 

  271. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997 February 7;88(3):287–98.

    PubMed  CAS  Google Scholar 

  272. Nowakowski RS, Caviness VS, Jr., Takahashi T, Hayes NL. Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex. Results Probl Cell Differ. 2002;39:1–25.

    PubMed  Google Scholar 

  273. Calegari F, Huttner WB. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci. 2003 December 15;116(Pt 24):4947–55.

    PubMed  CAS  Google Scholar 

  274. Calegari F, Haubensak W, Haffner C, Huttner WB. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci. 2005 July 13;25(28):6533–8.

    PubMed  CAS  Google Scholar 

  275. Qian X, Goderie SK, Shen Q, Stern JH, Temple S. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development. 1998 August;125(16):3143–52.

    PubMed  CAS  Google Scholar 

  276. Qian X, Shen Q, Goderie SK, et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron. 2000 October;28(1):69–80.

    PubMed  CAS  Google Scholar 

  277. Takahashi J, Palmer TD, Gage FH. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J Neurobiol. 1999 January;38(1):65–81.

    PubMed  CAS  Google Scholar 

  278. Watterson JM, Watson DG, Meyer EM, Lenox RH. A role for protein kinase C and its substrates in the action of valproic acid in the brain: implications for neural plasticity. Brain Res. 2002 April 26;934(1):69–80.

    PubMed  CAS  Google Scholar 

  279. Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 1996 December 15;10(24):3129–40.

    PubMed  CAS  Google Scholar 

  280. Aberg MA, Aberg ND, Palmer TD, et al. IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol Cell Neurosci. 2003 September;24(1):23–40.

    PubMed  CAS  Google Scholar 

  281. Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron. 1996 October;17(4):595–606.

    PubMed  CAS  Google Scholar 

  282. Bonni A, Sun Y, Nadal-Vicens M, et al. Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science. 1997 October 17;278(5337):477–83.

    PubMed  CAS  Google Scholar 

  283. Studer L, Csete M, Lee SH, et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci. 2000 October 1;20(19):7377–83.

    PubMed  CAS  Google Scholar 

  284. Bull ND, Bartlett PF. The adult mouse hippocampal progenitor is neurogenic but not a stem cell. J Neurosci. 2005 November 23;25(47):10815–21.

    PubMed  CAS  Google Scholar 

  285. Hsieh J, Gage FH. Epigenetic control of neural stem cell fate. Curr Opin Genet Dev. 2004 October;14(5):461–9.

    PubMed  CAS  Google Scholar 

  286. Lee J-P, Schmidt NO, Baier PC. Stem Cell Transplantation in the Brain. In: Loring J, Wesselschmidt R, Schwartz P (eds). Human Stem Cell Manual: A Laboratory Guide. 1st ed. New York: Elsevier Inc., 2007:332–50.

    Google Scholar 

  287. Lee JP, McKercher S, Muller FJ, Snyder EY. Neural stem cell transplantation in mouse brain. Curr Protoc Neurosci. 2008 January;Chapter 3:Unit 3 10.

    Google Scholar 

  288. Bjugstad KB, Redmond DE, Jr., Teng YD, et al. Neural stem cells implanted into MPTP-treated monkeys increase the size of endogenous tyrosine hydroxylase-positive cells found in the striatum: a return to control measures. Cell Transplant. 2005;14(4):183–92.

    PubMed  Google Scholar 

  289. Bjugstad KB, Teng YD, Redmond DE, Jr., et al. Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson’s disease. Exp Neurol. 2008 June;211(2):362–9.

    PubMed  CAS  Google Scholar 

  290. Wakeman DR, Crain AM, Snyder EY. Large animal models are critical for rationally advancing regenerative therapies. Regen Med. 2006 July;1(4):405–13.

    PubMed  Google Scholar 

  291. Le Belle JE, Caldwell MA, Svendsen CN. Improving the survival of human CNS precursor-derived neurons after transplantation. J Neurosci Res. 2004 April 15;76(2):174–83.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Y. Snyder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wakeman, D.R., Hofmann, M.R., Teng, Y.D., Snyder, E.Y. (2009). Neural Progenitors. In: Masters, J.R., Palsson, B.Ø. (eds) Human Adult Stem Cells. Human Cell Culture, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2269-1_1

Download citation

Publish with us

Policies and ethics