Skip to main content

A Short History of Early Work on Isotopes

  • Chapter
  • First Online:
Isotope Effects

Abstract

A brief introduction deals with the time period from Dalton to the discovery of isotopes by Soddy and Fajans in the early twentieth century which was soon followed by the invention of the mass spectrograph (1922). The next section covers the period from 1922 to the discovery of deuterium by Urey and his colleagues. It includes a discussion of isotope effects in spectroscopy, particularly band spectra of diatomic molecules, and also discusses the discovery of the important stable isotopes in the second row of the periodic table. It ends with the discovery of deuterium, probably the most “popular” isotope for isotope effect studies. The chapter ends with a short description of the “apparatus” of theory and experimentation available for isotope effect work at the time of the discovery of deuterium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     ∗ Nobel Prizes in Chemistry and Physics were awarded starting in 1901. In this chapter (the first mention of the name of a Nobel Laureate in the running text will be followed by the notation (NLP xxxx ∗ ) or (NLCxxxx ∗ ) where NLP and NLC stand for Nobel Laureate Physics and Nobel Laureate Chemistry respectively while xxxx notes the year of the award.

  2. 2.

    The reference to keltium is to a rare element which the French chemist G. Urbain claimed to have discovered. Moseley was able convince Urbain that keltium did not exist (Heilbronn 1974).

  3. 3.

    While we have not carefully studied all of the tabular material in Moseley’s papers, we note that Moseley’s atomic numbers agree with the values accepted today, with one exception. Thus, Moseley assigns N = 66 to Ho and N = 67 to Dy; the presently accepted assignment reverses these two elements in the periodic table.

References

  • Aston, F. W. Neon. Nature 104, 334 (1920a).

    Google Scholar 

  • Aston, F. W. The constitution of the elements. Nature 104, 393 (1920b).

    Google Scholar 

  • Aston, F. W. Isotopes and atomic weights. Nature 105, 617–619 (1920c).

    Google Scholar 

  • Aston, F. W. Mass Spectra and Isotopy, Nobel Lecture, December 12, 1922 available at http://nobelprize.org/nobel_prizes/chemistry/laureates/1922/aston-lectures.pdf

  • Aston, F. W. A new spectrograph and the whole number rule. Proc. Roy. Soc. Lond. A115, 487–514 (1927).

    Google Scholar 

  • Babcock, H. D. Some new features of the atmospheric oxygen bands, and the relative abundance of the isotopes 0–16, 0–18. Proc. Nat. Acad. Sci. USA 15, 471–477 (1929).

    Google Scholar 

  • Birge, R. T. and Menzel, D. H. The relative abundance of the oxygen isotopes, and the basis of the atomic weight system. Phys. Rev. 37, 1669–1671 (1931).

    Article  CAS  Google Scholar 

  • Bleakney, W. Additional evidence for an isotope of hydrogen of mass 2. Phys. Rev. 39, 536 (1932).

    Article  CAS  Google Scholar 

  • Bronsted, J. N. and de Hevesy, G. The separation of the isotopes of mercury. Nature 106, 144 (1920).

    Google Scholar 

  • Bohr, N. Der Bau der Atome und die Physikalischen und Chemischen Eigenschaften der Elemente. Z. f. Physik 19, 1–67 (1922).

    Google Scholar 

  • Chadwick, J. The existence of a neutron. Proc. Roy. Soc. Lond. A136, 692–708 (1932).

    Google Scholar 

  • Dahl, J. P. On the Einstein-Stern model of rotational heat capacities. J. Chem. Phys. 109, 10688–10691 (1998).

    Google Scholar 

  • de Hevesy, G. and Paneth, F. Zur Frage der Isotopen Elemente. Monatshefte für Chemie 36, 75–93 (1915).

    Google Scholar 

  • Dieke, G. H. and Babcock, H. D. The structure of the atmospheric absorption bands of oxygen. Proc. Nat. Acad. Sci. 13 670–678 (1927).

    Article  CAS  Google Scholar 

  • Einstein, A. and Stern, O. Einige Argumente für die Annahme einer Molekularen Agitation bein Absoluten Nullpunkt. Ann. Physik 40, 551–560 (1913).

    Google Scholar 

  • Fajans, K. Ûber eine Beziehung Zwisohen der Art einer radioaktiven Umwandlung und dem elektro chemischer Verhalten der betreftenden Radioelemente. Phys.Z. 14, 131–136 (1913a); Fajans, K. Die Stellung der Radioelemente in Periodischen System. Phys. Z. 14, 136 (1913a).

    Google Scholar 

  • Fajans, K. Radioactive transformations and the periodic system of the elements. Berichte der Deutschen Chemischen Gesellschaft 46, 422–439 (1913b).

    Google Scholar 

  • Fajans, K. The radioelements and the periodic system. Naturwissenschaften 2, 429, 463, 543 (1914).

    Google Scholar 

  • Fleck, A. See Biographical Memoirs of Fellows of the Royal Society, Alexander Fleck, Baron Fleck of Saltcoats, 17, 242–454 (1971). He received his chemistry degree in 1911 at Glasgow and remained with Soddy as an assistant until 1913. He stayed in close contact with Soddy for another 2 years. He then moved on to industry and had a very successful career, serving as chairman of ICI from 1953–1960. His papers on radioactivity were all single author publications.

    Google Scholar 

  • Garrett, A. B. Radioactive Tracers: G. de Hevesy. J. Chem. Ed. 40, 36–37 (1963).

    Google Scholar 

  • Geiger, H. and Marsden, F. The laws of deflexion of α particles through large angles. Phil. Mag. 25, 604–623 (1913).

    CAS  Google Scholar 

  • Giauque, W. F. and Johnston, H. L. An isotope of oxygen, mass 18. Interpretation of the atmospheric absorption bands. J. Am. Chem. Soc. 51, 1436–1441 (1929a).

    Google Scholar 

  • Giauque, W. F. and Johnston, H. L. An isotope of oxygen, mass 17, in the earth’s atmosphere. J. Am. Chem. Soc. 51, 3528–3534 (1929b).

    Article  Google Scholar 

  • Haas, A. Rotation spectrum and isotopy. Z. f. Physik 40, 68–72 (1921).

    Google Scholar 

  • Harkins, W. D. and Wilson, E. D. The changes of mass and weight involved in the formation of complex atoms. J. Am. Chem. Soc. 37, 1367–1383 (1915a).

    Article  CAS  Google Scholar 

  • Harkins, W. D. and Wilson, E. D. The structure of complex atoms, the hydrogen–helium system. J. Am. Chem. Soc. 37, 1383–1396 (1915b).

    Article  CAS  Google Scholar 

  • Harkins, W. D. and Wilson, E. D. Recent work on the structure of the atom. J. Am. Chem. Soc. 37, 1396–1420 (1915c).

    Article  CAS  Google Scholar 

  • Harkins, W. D. The separation of the element chlorine and meta chlorine and the positive electron. Nature 105, 230–231 (1920).

    Google Scholar 

  • Harkins, W. D. and Hayes, A. The separation of the element chlorine into isotopes (isotopic elements). J. Am. Chem. Soc. 43, 1803–1825 (1921).

    Article  CAS  Google Scholar 

  • Heilbronn, J. L. H. G. J. Moseley: The Life and Letters of an English Physicist, 1887–1915, University of California Press, Berkeley, CA (1974).

    Google Scholar 

  • Imes, E. S. Measurements on the near infrared absorption of some diatomic gases. Astrophys. J. 50, 251–276 (1919).

    Google Scholar 

  • Jenkins, F. A. and McKellar, A. Mass ratio of the boron isotopes from the spectrum of BO. Phys. Rev. 42, 464–487 (1932).

    Article  CAS  Google Scholar 

  • Jevons, W. Spectroscopic investigations in connection with the active modification of nitrogen IV – a band spectrum of boron nitride. Proc. Roy. Soc. Lond. 91A, 120–134 (1915).

    Google Scholar 

  • Keesom, W. H. and van Dijr, H. On the possibility of separating neon and its isotopic components by rectification. Koninklijke Akademie van Wetenschappen te Amsterdam, Proc. of the Sect. of Sciences XXXIV, 42–50 (1931); Keesom, W. H. and Hantjes, Vapor pressures of neon of different isotopic compositions. J. Physica 2, 986–999 (1935).

    Google Scholar 

  • King, A. S. and Birge, R. T. Evidence from band spectra of the existence of a carbon isotope of mass 13. Astrophys.J. 72, 19–40 (1930).

    Google Scholar 

  • Kratzer, A. A spectroscopic confirmation of the isotopes of chlorine. Z. f. Physik 30, 460–465 (1920).

    Google Scholar 

  • Lindemann F. A. and Aston, F. W. The possibility of separating isotopes. Phil. Mag. 37, 523–534 (1919).

    CAS  Google Scholar 

  • Lindemann, F. A. Note on the vapour pressure and affinity of isotopes. Phil. Mag. 38, 173–181 (1919).

    Google Scholar 

  • Loomis, F. W. Infra-red spectra of isotopes. Astrophys. J. 52, 248–256 (1920).

    Google Scholar 

  • McCoy. H. N. and Ross, W. H. The specific radioactivity of thorium and the variation of the activity with chemical treatment and with time. J. Am. Chem. Soc. 29, 1709–1718 (1907).

    Google Scholar 

  • Millonni, P. W. and Shih, M. L. Zero-point energy in early quantum theory. Am. J. Phys. 59, 684–698 (1991).

    Article  Google Scholar 

  • Moseley, H. G. J. The high frequency spectra of the elements. Phil. Mag. 26, 1024–1034 (1913).

    Google Scholar 

  • Moseley, H. G. J. The high frequency spectra of the elements, Part II. Phil. Mag. 27, 703–713 (1914).

    Google Scholar 

  • Mulliken, R. S. and Harkins, W. D. The separation of isotopes. Theory of resolution of isotopic mixtures by diffusion and similar processes. Experimental separation of mercury by evaporation in a vacuum. J. Am. Chem. Soc. 44, 37–65 (1922).

    Google Scholar 

  • Mulliken, R. S. The isotope effect in band spectra, Part I. Phys. Rev. 25, 119–138 (1925a).

    Google Scholar 

  • Mulliken, R. S. The isotope effect in band spectra, II: the spectrum of boron monoxide. Phys. Rev. 25, 259–296 (1925b).

    Google Scholar 

  • Mulliken, R. S. The isotope effect in band spectra III. The spectrum of copper iodide as excited by active nitrogen. Phys. Rev. 26, 1–34 (1925c).

    Google Scholar 

  • Naudé, R. An isotope of nitrogen, mass 15. Phys. Rev. 34, 1498–1499 (1929). Note that Naudé refers in this paper to two earlier communications by King and Birge (1930) on the discovery of 13C.

    Google Scholar 

  • Rutherford, E. The scattering of the α and β rays and the structure of the atom. Phil. Mag. 21, 669–688 (1911).

    CAS  Google Scholar 

  • Rutherford, E. The structure of the atom. Nature 92, 423 (1913).

    Google Scholar 

  • Rutherford, E. Collisions of alpha particles with light atoms. IV An anomolous effect in nitrogen. Phil. Mag. 37, 581–587 (1919).

    Google Scholar 

  • Rutherford, E. Nuclear constitution of atoms. Proc. Roy. Soc. Lond. A97, 374–400 (1920).

    Google Scholar 

  • Soddy, F. The radio-elements and the periodic law. Chem. News 107, 97–99 (1913a).

    Google Scholar 

  • Soddy, F. Intra-atomic charge. Nature 92, 399–400 (1913b).

    Google Scholar 

  • Soddy, F. The periodic table of the elements. Le Radium 11, 6 (1914).

    Google Scholar 

  • Soddy, F. The complexity of the chemical elements. Scientific Monthly 5, 451 (1917). The Interpretation of Radium. 4th Ed. G. P. Putnam’s Sons, New York 1922. The Story of Atomic Energy, Nova Atlantis, London 1949.

    Google Scholar 

  • Soddy, F. The Origins of the Conceptions of Isotopes, Nobel Lecture 1922, available at http://nobelprize.org/nobel_prizes/chemistry/laureates/1921/soddy-lectures.pdf.

  • Thomson, J. J. Rays of positive electricity. Proc. Roy. Soc. Lond. A89, 1–20 (1913).

    Google Scholar 

  • Urey, H. C. Brickwedde, H. G. and Murphy, G. M. A hydrogen isotope of mass 2. Phys. Rev. 39, 164–165 (1932).

    Article  CAS  Google Scholar 

  • Urey, H. C. and Teal, G. K. The hydrogen isotope of atomic weight two. Rev. Mod. Phys. 7, 34–94 (1935).

    Article  CAS  Google Scholar 

  • van den Broek, A. Intra-atomic charge. Nature 92, 372–373 (1913a).

    Google Scholar 

  • van den Broek, A. Intra-atomic charge and structure of the atom. Nature 92, 470–478 (1913b).

    Google Scholar 

  • Washburn, E. W. and Urey, H. C. Concentration of the 2H isotope of hydrogen by the fractional electrolysis of water. Proc. Nat. Acad. Sci.USA 18, 496–498 (1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wolfsberg, M., Van Hook, W.A., Paneth, P. (2009). A Short History of Early Work on Isotopes. In: Isotope Effects. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2265-3_1

Download citation

Publish with us

Policies and ethics