Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 13)


Lymphangioleiomyomatosis (LAM) is a rare, neoplastic disease in which abnormal smooth muscle-like cells (LAM cells) proliferate in the lungs and along the axial lymphatic systems including the lymph nodes and thoracic ducts. LAM cells are transformed cells due to loss-of-function type mutations of either the TSC1 or TSC2 gene, which are tumor suppressor genes originally identified to be the genetic cause for tuberous sclerosis complex. LAM shows an extreme gender predilection and it usually occurs in women of reproductive age. Its pathological findings are characterized by the existence of abundant lymphatic vessels resulting from LAM-associated lymphangiogenesis since LAM cells produce potent lymphangiogenic growth factors, VEGF-C and VEGF-D. Consequently its clinical manifestations include the symptoms and signs related with abnormalities in the lymphatic system, such as lymphangioleiomyomas, chylous leaks into body cavities and urine, from the airways or even the vagina, or lymphedema of the lower extremities as well as a progressive cystic destruction of the lungs, thus resulting in respiratory failure. The extent of LAM-associated lymphangiogenesis correlates with the histologic severity of LAM. The mechanism for the progression of LAM is now hypothesized to be a unique invasion-independent mechanism mediated with LAM-associated lymphangiogenesis. LAM cells are considered to disseminate and form a metastatic lesion in the lungs and axial lymphatic systems through the lymphangiogenesis-mediated fragmentation of LAM foci and followed by the subsequent shedding of LAM cell clusters into the lymphatic circulation.

Key words

Estrogen LAM cell cluster Lymphangiogenesis Tuberous sclerosis complex VEGF-C VEGF-D 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aubry MC, Myers JL, Ryu JH, et al. Pulmonary lymphangioleiomyomatosis in a man. AmJ Respir Crit Care Med 2000, 162: 749–52.Google Scholar
  2. 2.
    Schiavina M, Di Scioscio V, Contini P, et al. Pulmonary lymphangioleiomyomatosis in a karyotypically normal man without tuberous sclerosis complex. Am J Respir Crit Care Med 2007, 176: 96–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Burrell LST, Ross JM. A case of chylous effusion due to leiomyosarcoma. Br J Tuberc 1937, 31: 38–9.CrossRefGoogle Scholar
  4. 4.
    Von Stossel E. Uber musculare cirrose der lunge. Beitr Klin Tuberk 1937, 90: 432–42.CrossRefGoogle Scholar
  5. 5.
    Frack MD, Simon L, Dawson BH. The lymphangiomyomatosis syndrome. Cancer 1968, 22: 428–37.PubMedCrossRefGoogle Scholar
  6. 6.
    Carrington CB, Cugell DW, Gaensler EA, et al. Lymphangioleiomyomatosis. Physiologic-pathologic-radiologic correlations. Am Rev Respir Dis 1977, 116: 977–95.PubMedGoogle Scholar
  7. 7.
    Silverstein EF, Ellis K, Wolff M, Jaretzki A, III. Pulmonary lymphangiomyomatosis. AmJ Roentgenol Radium Ther Nucl Med 1974, 120: 832–50.Google Scholar
  8. 8.
    Carsillo T, Astrinidis A, Henske EP. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci U S A 2000, 97: 6085–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Smolarek TA, Wessner LL, McCormack FX, Mylet JC, Menon AG, Henske EP. Evidence that lymphangiomyomatosis is caused by TSC2 mutations: chromosome 16p13 loss of heterozygosity in angiomyolipomas and lymph nodes from women with lymphangiomyomatosis. Am J Hum Genet 1998, 62: 810–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Arnold S, Kristof JM. Lymphangioleiomyomatosis. In Interstitial Lung Disease (Marvin I, Schawarz TEKJ, Eds.), 4th ed, pp. 851–64. BC Decker Inc., London, 2003;Google Scholar
  11. 11.
    Hayashida M, Seyama K, Inoue Y, Fujimoto K, Kubo K. The epidemiology of lymphangioleiomyomatosis in Japan: a nationwide cross-sectional study of presenting features and prognostic factors. Respirology 2007, 12: 523–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson SR, Tattersfield AE. Clinical experience of lymphangioleiomyomatosis in the UK. Thorax 2000, 55: 1052–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Urban T, Lazor R, Lacronique J, et al. Pulmonary lymphangioleiomyomatosis. A study of 69 patients. Groupe d’Etudes et de Recherche sur les Maladies ‘‘Orphelines’’ Pulmonaires (GERM‘‘O’’P). Medicine (Baltimore) 1999, 78: 321–37.CrossRefGoogle Scholar
  14. 14.
    Foundation TL. The international LAM symposium 2008, 2008.Google Scholar
  15. 15.
    Ryu JH, Moss J, Beck GJ, et al. The NHLBI lymphangioleiomyomatosis registry: characteristics of 230 patients at enrollment. Am J Respir Crit Care Med 2006, 173: 105–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Guinee D, Singh R, Azumi N, et al. Multifocal micronodular pneumocyte hyperplasia: a distinctive pulmonary manifestation of tuberous sclerosis. Mod Pathol 1995, 8: 902–6.PubMedGoogle Scholar
  17. 17.
    Maruyama H, Seyama K, Sobajima J, et al. Multifocal micronodular pneumocyte hyperplasia and lymphangioleiomyomatosis in tuberous sclerosis with a TSC2 gene. Mod Pathol 2001, 14: 609–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Seyama K, Kira S, Takahashi H, et al. Longitudinal follow-up study of 11 patients with pulmonary lymphangioleiomyomatosis: diverse clinical courses of LAM allow some patients to be treated without anti-hormone therapy. Respirology 2001, 6: 331–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Bonetti F, Chiodera PL, Pea M, et al. Transbronchial biopsy in lymphangiomyomatosis of the lung. HMB45 for diagnosis. Am J Surg Pathol 1993, 17: 1092–102.PubMedCrossRefGoogle Scholar
  20. 20.
    Brentani MM, Carvalho CR, Saldiva PH, Pacheco MM, Oshima CT. Steroid receptors in pulmonary lymphangiomyomatosis. Chest 1984, 85: 96–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Graham ML, II, Spelsberg TC, Dines DE, Payne WS, Bjornsson J, Lie JT. Pulmonary lymphangiomyomatosis: with particular reference to steroid-receptor assay studies and pathologic correlation. Mayo Clin Proc 1984, 59: 3–11.PubMedGoogle Scholar
  22. 22.
    Cornog JL, Jr., Enterline HT. Lymphangiomyoma, a benign lesion of chyliferous lymphatics synonymous with lymphangiopericytoma. Cancer 1966, 19: 1909–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Enterline HT, Roberts B. Lymphangiopericytoma; case report of a previously undescribed tumor type. Cancer 1955, 8: 582–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Kumasaka T, Seyama K, Mitani K, et al. Lymphangiogenesis-mediated shedding of LAM cell clusters as a mechanism for dissemination in lymphangioleiomyomatosis. Am J Surg Pathol 2005, 29: 1356–66.PubMedCrossRefGoogle Scholar
  25. 25.
    Kumasaka T, Seyama K, Mitani K, et al. Lymphangiogenesis in lymphangioleiomyomatosis: its implication in the progression of lymphangioleiomyomatosis. Am J Surg Pathol 2004, 28: 1007–16.PubMedCrossRefGoogle Scholar
  26. 26.
    Capron F, Ameille J, Leclerc P, et al. Pulmonary lymphangioleiomyomatosis and Bourneville’s tuberous sclerosis with pulmonary involvement: the same disease? Cancer 1983, 52: 851–5.PubMedCrossRefGoogle Scholar
  27. 27.
    European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993, 75: 1305–15.Google Scholar
  28. 28.
    Van Slegtenhorst M, de Hoogt R, Hermans C, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997, 277: 805–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Sepp T, Yates JR, Green AJ. Loss of heterozygosity in tuberous sclerosis hamartomas. J Med Genet 1996, 33: 962–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Henske EP, Scheithauer BW, Short MP, et al. Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet 1996, 59: 400–6.PubMedGoogle Scholar
  31. 31.
    Knudson AG, Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 1971, 68: 820–3.PubMedCrossRefGoogle Scholar
  32. 32.
    Astrinidis A, Khare L, Carsillo T, et al. Mutational analysis of the tuberous sclerosis gene TSC2 in patients with pulmonary lymphangioleiomyomatosis. J Med Genet 2000, 37: 55–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Henske EP. Metastasis of benign tumor cells in tuberous sclerosis complex. Genes Chromosomes Cancer 2003, 38: 376–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Sato T, Seyama K, Fujii H, et al. Mutation analysis of the TSC1 and TSC2 genes in Japanese patients with pulmonary lymphangioleiomyomatosis. J Hum Genet 2002, 47: 20–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 2005, 37: 19–24.PubMedCrossRefGoogle Scholar
  36. 36.
    Arbiser JL, Brat D, Hunter S, et al. Tuberous sclerosis-associated lesions of the kidney, brain, and skin are angiogenic neoplasms. J Am Acad Dermatol 2002, 46: 376–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Nguyen-Vu PA, Fackler I, Rust A, et al. Loss of tuberin, the tuberous-sclerosis-complex-2 gene product is associated with angiogenesis. J Cutan Pathol 2001, 28: 470–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Koets AP, Rutten VP, de Boer M, Bakker D, Valentin-Weigand P, Van Eden W. Differential changes in heat shock protein, lipoarabinomannan, and purified protein derivative-specific immunoglobulin G1 and G2 isotype responses during bovine Mycobacterium avium subsp. paratuberculosis infection. Infect Immun 2001, 69: 1492–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Abe R, Kimura M, Airosaki A, et al. Retroperitioneal lymphangiomyomatosis with lymphedema of the legs. Lymphology 1980, 13: 62–7.PubMedGoogle Scholar
  40. 40.
    Van Lith JM, Hoekstra HJ, Boeve WJ, Weits J. Lymphoedema of the legs as a result of lymphangiomyomatosis. A case report and review of the literature. Neth J Med 1989, 34: 310–6.PubMedGoogle Scholar
  41. 41.
    Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev 2002, 82: 673–700.PubMedGoogle Scholar
  42. 42.
    Itami M, Teshima S, Asakuma Y, Chino H, Aoyama K, Fukushima N. Pulmonary lymphangiomyomatosis diagnosed by effusion cytology. A case report. Acta Cytol 1997, 41: 522–8.PubMedGoogle Scholar
  43. 43.
    Yamauchi M, Nakahara H, Uyama K, Tsujimoto A, Tamai M, Aozasa K. Cytologic finding of chyloascites in lymphangioleiomyomatosis. A case report. Acta Cytol 2000, 44: 1081–4.PubMedGoogle Scholar
  44. 44.
    Hirama M, Atsuta R, Mitani K, et al. Lymphangioleiomyomatosis diagnosed by immunocytochemical and genetic analysis of lymphangioleiomyomatosis cell clusters found in chylous pleural effusion. Intern Med 2007, 46: 1593–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Karpanen T, Egeblad M, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001, 61: 1786–90.PubMedGoogle Scholar
  46. 46.
    Mandriota SJ, Jussila L, Jeltsch M, et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. Embo J 2001, 20: 672–82.PubMedCrossRefGoogle Scholar
  47. 47.
    Seyama K, Kumasaka T, Souma S, et al. Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat Res Biol 2006, 4: 143–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Matsui K, Beasley MB, Nelson WK, et al. Prognostic significance of pulmonary lymphangio-leiomyomatosis histologic score. Am J Surg Pathol 2001, 25: 479–84.PubMedCrossRefGoogle Scholar
  49. 49.
    Wartiovaara U, Salven P, Mikkola H, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost 1998, 80: 171–5.PubMedGoogle Scholar
  50. 50.
    Brugarolas J, Kaelin WG, Jr. Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 2004, 6: 7–10.PubMedCrossRefGoogle Scholar
  51. 51.
    Brugarolas JB, Vazquez F, Reddy A, Sellers WR, Kaelin WG, Jr. TSC2 regulates VEGF through mTOR-dependent and independent pathways. Cancer Cell 2003, 4: 147–58.PubMedCrossRefGoogle Scholar
  52. 52.
    El-Hashemite N, Walker V, Zhang H, Kwiatkowski DJ. Loss of TSC1 or TSC2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res 2003, 63: 5173–7.PubMedGoogle Scholar
  53. 53.
    Kobayashi S, Kishimoto T, Kamata S, Otsuka M, Miyazaki M, Ishikura H. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci 2007, 98: 726–33.PubMedCrossRefGoogle Scholar
  54. 54.
    Kopfstein L, Veikkola T, Djonov VG, et al. Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol 2007, 170: 1348–61.PubMedCrossRefGoogle Scholar
  55. 55.
    Sugino T, Kusakabe T, Hoshi N, et al. An invasion-independent pathway of blood-borne metastasis: a new murine mammary tumor model. Am J Pathol 2002, 160: 1973–80.PubMedGoogle Scholar
  56. 56.
    Sugino T, Yamaguchi T, Ogura G, et al. Morphological evidence for an invasion-independent metastasis pathway exists in multiple human cancers. BMC Med 2004, 2: 9.PubMedCrossRefGoogle Scholar
  57. 57.
    Bernstein SM, Newell JD, Jr., Adamczyk D, Mortenson RL, King TE, Jr., Lynch DA. How common are renal angiomyolipomas in patients with pulmonary lymphangiomyomatosis? Am J Respir Crit Care Med 1995, 152: 2138–43.PubMedGoogle Scholar
  58. 58.
    Astrinidis A, Cash TP, Hunter DS, Walker CL, Chernoff J, Henske EP. Tuberin, the tuberous sclerosis complex 2 tumor suppressor gene product, regulates Rho activation, cell adhesion and migration. Oncogene 2002, 21: 8470–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Astrinidis A, Henske EP. Aberrant cellular differentiation and migration in renal and pulmonary tuberous sclerosis complex. J Child Neurol 2004, 19: 710–5.PubMedGoogle Scholar
  60. 60.
    Karbowniczek M, Astrinidis A, Balsara BR, et al. Recurrent lymphangiomyomatosis after transplantation: genetic analyses reveal a metastatic mechanism. Am J Respir Crit Care Med 2003, 167: 976–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Crooks DM, Pacheco-Rodriguez G, DeCastro RM, et al. Molecular and genetic analysis of disseminated neoplastic cells in lymphangioleiomyomatosis. Proc Natl Acad Sci U S A 2004, 101: 17462–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001, 7: 199–205.PubMedCrossRefGoogle Scholar
  63. 63.
    He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002, 94: 819–25.PubMedGoogle Scholar
  64. 64.
    Bissler JJ, McCormack FX, Young LR, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008, 358: 140–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Huber S, Bruns CJ, Schmid G, et al. Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int 2007, 71: 771–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Respiratory MedicineJuntendo University, School of MedicineTokyoJapan
  2. 2.Department of Human PathologyJuntendo University School of MedicineTokyoJapan

Personalised recommendations