Lymphangiogenesis and Imaging of the Lymphatics in Cancer

Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 13)


Metastatic spread of cancer is one of the major causes of cancer death. The lymphatics contribute to metastatic spread by providing a conduit for the spread of cancer cells. Tumors actively induce new lymphatic formation by deploying growth factors, a process known as lymphangiogenesis. Systemic lymphatic imaging with conventional modalities such as computed tomography, magnetic resonance imaging and ultrasound is limited to morphological evaluation for detection of enlarged lymph nodes; on the other hand, functional lymphatic imaging approaches, including positron emission tomography, dynamic contrast-enhanced MRI, lymphotrophic iron oxide nanoparticle enhanced-MRI have been used to diagnose metastatic cancer in lymph nodes. Recently, new targeted lymphatic imaging techniques including gadolinium- conjugated dendrimer-based MRI, optical imaging using nano-sized molecules based on fluorescence-labeled dendrimers, organic macromolecules, or quantum dots, have been developed. In this chapter, we will explain principles and basic findings of conventional and functional lymphatic imaging and will outline newly developed targeted lymphatic imaging approaches.

Key words

Imaging Lymphangiogenesis Cancer Metastases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Su JL, Yen CJ, Chen PS, et al. The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer 2007, 96: 541–5.PubMedGoogle Scholar
  2. 2.
    Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 2001, 7: 462–8.PubMedGoogle Scholar
  3. 3.
    Achen MG, McColl BK, Stacker SA. Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 2005, 7: 121–7.PubMedGoogle Scholar
  4. 4.
    Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature 2005, 438: 967–74.PubMedGoogle Scholar
  5. 5.
    Shayan R, Achen MG, Stacker SA. Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis 2006, 27: 1729–38.PubMedGoogle Scholar
  6. 6.
    He Y, Karpanen T, Alitalo K. Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta 2004, 1654: 3–12.PubMedGoogle Scholar
  7. 7.
    Thiele W, Sleeman JP. Tumor-induced lymphangiogenesis: a target for cancer therapy? J Biotechnol 2006, 124: 224–41.PubMedGoogle Scholar
  8. 8.
    Tobler NE, Detmar M. Tumor and lymph node lymphangiogenesis – impact on cancer metastasis. J Leukoc Biol 2006, 80: 691–6.PubMedGoogle Scholar
  9. 9.
    Saharinen P, Tammela T, Karkkainen MJ, Alitalo K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol 2004, 25: 387–95.PubMedGoogle Scholar
  10. 10.
    Drayton DL, Liao S, Mounzer RH, Ruddle NH. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 2006, 7: 344–53.PubMedGoogle Scholar
  11. 11.
    Harrell MI, Iritani BM, Ruddell A. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 2007, 170: 774–86.PubMedGoogle Scholar
  12. 12.
    Allan R. Sentinel node localization: do or dye alone? Br J Radiol 2001, 74: 475–7.PubMedGoogle Scholar
  13. 13.
    Hsueh EC, Hansen N, Giuliano AE. Intraoperative lymphatic mapping and sentinel lymph node dissection in breast cancer. CA Cancer J Clin 2000, 50: 279–91.PubMedGoogle Scholar
  14. 14.
    Cabanas RM. An approach for the treatment of penile carcinoma. Cancer 1977, 39: 456–66.PubMedGoogle Scholar
  15. 15.
    Morton DL, Wen DR, Wong JH, et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 1992, 127: 392–9.PubMedGoogle Scholar
  16. 16.
    Witte MH, Bernas MJ, Martin CP, Witte CL. Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc Res Tech 2001, 55: 122–45.PubMedGoogle Scholar
  17. 17.
    Baldwin ME, Stacker SA, Achen MG. Molecular control of lymphangiogenesis. Bioessays 2002, 24: 1030–40.PubMedGoogle Scholar
  18. 18.
    Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 2002, 21: 1505–13.PubMedGoogle Scholar
  19. 19.
    Oliver G. Lymphatic vasculature development. Nat Rev Immunol 2004, 4: 35–45.PubMedGoogle Scholar
  20. 20.
    Prevo R, Banerji S, Ferguson DJ, Clasper S, Jackson DG. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J Biol Chem 2001, 276: 19420–30.PubMedGoogle Scholar
  21. 21.
    Jackson DG, Prevo R, Clasper S, Banerji S. LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 2001, 22: 317–21.PubMedGoogle Scholar
  22. 22.
    Valtola R, Salven P, Heikkila P, et al. VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 1999, 154: 1381–90.PubMedGoogle Scholar
  23. 23.
    Makinen T, Adams RH, Bailey J, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 2005, 19: 397–410.PubMedGoogle Scholar
  24. 24.
    Sundlisaeter E, Dicko A, Sakariassen PO, Sondenaa K, Enger PO, Bjerkvig R. Lymphangiogenesis in colorectal cancer-Prognostic and therapeutic aspects. Int J Cancer 2007, 121: 1401–9.PubMedGoogle Scholar
  25. 25.
    Tuttle TM. Technical advances in sentinel lymph node biopsy for breast cancer. Am Surg 2004, 70: 407–13.PubMedGoogle Scholar
  26. 26.
    Farnsworth RH, Achen MG, Stacker SA. Lymphatic endothelium: an important interactive surface for malignant cells. Pulm Pharmacol Ther 2006, 19: 51–60.PubMedGoogle Scholar
  27. 27.
    Ji RC, Kato S. Intrinsic interrelation of lymphatic endothelia with nerve elements in the monkey urinary bladder. Anat Rec 2000, 259: 86–96.PubMedGoogle Scholar
  28. 28.
    Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001, 7: 192–8.PubMedGoogle Scholar
  29. 29.
    Stacker SA, Caesar C, Baldwin ME, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001, 7: 186–91.PubMedGoogle Scholar
  30. 30.
    Stacker SA, Williams RA, Achen MG. Lymphangiogenic growth factors as markers of tumor metastasis. APMIS 2004, 112: 539–49.PubMedGoogle Scholar
  31. 31.
    Schoppmann SF, Birner P, Stockl J, et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002, 161: 947–56.PubMedGoogle Scholar
  32. 32.
    Wartiovaara U, Salven P, Mikkola H, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost 1998, 80: 171–5.PubMedGoogle Scholar
  33. 33.
    Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2007, 109: 1010–7.PubMedGoogle Scholar
  34. 34.
    Achen MG, Jeltsch M, Kukk E, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci U S A 1998, 95: 548–53.PubMedGoogle Scholar
  35. 35.
    Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett 2006, 580: 2879–87.PubMedGoogle Scholar
  36. 36.
    Bjorndahl MA, Cao R, Burton JB, et al. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res 2005, 65: 9261–8.PubMedGoogle Scholar
  37. 37.
    Persaud K, Tille JC, Liu M, et al. Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J Cell Sci 2004, 117: 2745–56.PubMedGoogle Scholar
  38. 38.
    Krishnan J, Kirkin V, Steffen A, et al. Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res 2003, 63: 713–22.PubMedGoogle Scholar
  39. 39.
    Wilhelm SM, Carter C, Tang L, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004, 64: 7099–109.PubMedGoogle Scholar
  40. 40.
    Luciani A, Itti E, Rahmouni A, Meignan M, Clement O. Lymph node imaging: basic principles. Eur J Radiol 2006, 58: 338–44.PubMedGoogle Scholar
  41. 41.
    Cserni G. Metastases in axillary sentinel lymph nodes in breast cancer as detected by intensive histopathological work up. J Clin Pathol 1999, 52: 922–4.PubMedGoogle Scholar
  42. 42.
    Derveaux L, Demedts M, Lijnen P, Amery A. Severe pulmonary thromboembolism following lymphography. Acta Clin Belg 1983, 38: 119–21.PubMedGoogle Scholar
  43. 43.
    Silvestri RC, Huseby JS, Rughani I, Thorning D, Culver BH. Respiratory distress syndrome from lymphangiography contrast medium. Am Rev Respir Dis 1980, 122: 543–9.PubMedGoogle Scholar
  44. 44.
    Jamieson JK, Dobson JF. Lectures on the lymphatic system of the stomach. Lancet 1907, 1: 1061–2.Google Scholar
  45. 45.
    Alex JC, Krag DN. Gamma-probe localization of lymph nodes. Surg Oncol 1993, 2: 137–43.PubMedGoogle Scholar
  46. 46.
    Krag DN, Weaver DL, Alex JC, Faibank JT. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using gamma probe. Surg Oncol 1993, 2: 335–9.PubMedGoogle Scholar
  47. 47.
    Giuliano AE, Kirgan DM, Guenter JM, Morton DL. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg 1994, 220: 391–8.PubMedGoogle Scholar
  48. 48.
    Albertini JJ, Lyman GH, Cox C, et al. Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 1996; 276: 1818–22.PubMedGoogle Scholar
  49. 49.
    Larson SM, Nelp WB. Radiopharmacology of a Simplified Technetium-99 m-Colloid Preparation fir Photoscanning. J Nucl Med 1966, 7: 817–26.PubMedGoogle Scholar
  50. 50.
    Bergqvist L, Strand S-E, Perssom BRR. Particle sizing and biokinetics of interstitial lymphoscintigraphic agents. Semin Nucl Med 1983; 12: 9–19.Google Scholar
  51. 51.
    Alazraki N, Glass EC, Castronovo F, Olmos RA, Podoloff D. Society of Nuclear Medicine. Procedure guideline for lymphoscintigraphy and the use of intraoperative gamma probe for sentinel lymph node localization in melanoma of intermediate thickness 1.0. J Nucl Med 2002, 43: 1414–8.PubMedGoogle Scholar
  52. 52.
    Maza S, Valencia R, Geworski L, et al. Peritumoral versus subareaolar administration of technetium-99 m nanocolloid for sentinel lymph node detection in breast cancer: preliminary results of a prospective intra-individual comparative study. Eur J Nucl Med Mol Imaging 2003, 30: 651–6.PubMedGoogle Scholar
  53. 53.
    Maza S, Thomas A, Winzer KJ, et al. Subareolar injection of technetium-99 m nanocolloid yields reliable data on the axillary lymph node tumor status in breast cancer patients with previous manipulations on the primary tumour: a prospective study of 117 patients. Eur J Nucl Med Mol Imaging 2004, 31: 671–5.PubMedGoogle Scholar
  54. 54.
    Yeung HW, Cody III HS, Turlakow A, et al. Lymphoscintigraphy and sentinel node localization in breast cancer patients: a comparison between 1-day and 2-day protocols. J Nucl Med 2001; 42: 420–3.PubMedGoogle Scholar
  55. 55.
    Mar MV, Miller SA, Kim EE, Macapinlac HA. Evaluation and localization of lymphatic drainage and sentinel lymph nodes in patients with head and neck melanomas by hybrid SPECT/CT lymphoscintigraphy imaging. J Nucl Med Technol 2007, 35: 10–6.PubMedGoogle Scholar
  56. 56.
    Nemoto T, Vana J, Bedwani RN, Baker HW, McGregor FH, Murphy GP. Management and survival of female breast cancer: results of a national survey by the American College of Surgeons. Cancer 1980, 45: 2917–24.PubMedGoogle Scholar
  57. 57.
    Carter CL, Allen C, Henson DE. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 1989, 63: 181–7.PubMedGoogle Scholar
  58. 58.
    Mustafa IA, Cole B, Wanebo HJ, Bland KI, Chang HR. Prognosis analysis of survival in small breast cancers. J Am Coll Surg 1998, 186: 562–9.PubMedGoogle Scholar
  59. 59.
    Rivadeneira DE, Simmons RM, Christos PJ; Hanna K, Daly JM, Osborne MP. Predictive factors associated with axillary lymph node metastases in T1a and T1b breast carcinomas: analysis in more than 900 patients. J Am Coll Surg 2000, 191: 1–6.PubMedGoogle Scholar
  60. 60.
    Mariani G, Moresco L, Viale G, et al. Radioguided sentinel lymph node biospsy in breast cancer. J Nucl Med 2001, 42: 1198–215.PubMedGoogle Scholar
  61. 61.
    Martin C, Cutuli B, Velten M. Predictive model of axillary lymph node involvement in women with small invasive breast carcinoma: axillary metastases in breast carcinoma. Cancer 2002, 94: 314–22.PubMedGoogle Scholar
  62. 62.
    Kim T, Giuliano AE, Lyman GH. Lymphatic mapping and sentinel lymph node biospsy in early-stage breast carcinoma: a metaanalysis. Cancer 2006, 106: 4–16.PubMedGoogle Scholar
  63. 63.
    Krag D, Weaver D, Ashikaga T, et al. The sentinel node in breast cancer – a multicenter validation study. N Engl J Med 1998, 339: 941–6.PubMedGoogle Scholar
  64. 64.
    Lyman GH, Giuliano AE, Somerfield MR, et al. American Society of Clinical Oncology guideline recommendations for sentinel lymph node biopsy in early-stage breast cancer. J Clin Oncol 2005, 23: 7703–20.PubMedGoogle Scholar
  65. 65.
    Balch CM, Buzaid AC, Soong SJ, et al. Final version of the American Joint Committee on cancer staging system for cutaneous melanoma. J Clin Oncol 2001, 19: 3635–48.PubMedGoogle Scholar
  66. 66.
    Cascinelli N. Margin of resection in the management of primary melanoma. Semin Surg Oncol 1998, 14: 272–5.PubMedGoogle Scholar
  67. 67.
    Balch CM, Soong SJ, Gershenwald J, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the AJCC melanoma staging system. J Clin Oncol 2001, 19: 3622–34.PubMedGoogle Scholar
  68. 68.
    Morton DL, Cochran AJ, Thompson JF, et al. Sentinel node biopsy for early-stage melanoma: accuracy and morbidity in MSLT-I, an international multicenter trial. Ann Surg 2005, 242: 302–11.PubMedGoogle Scholar
  69. 69.
    Sherman AI, Ter-Pogossian M. Lymph-node concentration of radioactive colloidal gold following interstitial injection. Cancer 1953, 6: 1238–40.PubMedGoogle Scholar
  70. 70.
    Zum Winkel K: Lymphologie mit Radionukliden. Verlag Hildergard Hoffman, Berlin, 1972, 30–32.Google Scholar
  71. 71.
    Juma N, Andrey T, Ege GN. Comparison as a lymphoscintigraphic agent between 99Tcm dextran and 99Tcm antimony sulphide colloid. Br J Radiol 1985, 58: 325–30.PubMedGoogle Scholar
  72. 72.
    Ege GN, Warbick A. Lymphoscintigraphy: a comparison of 99Tc(m) antimony sulphide colloid and 99Tc(m) stannous phytate. Br J Radiol 1979, 52: 124–9.PubMedGoogle Scholar
  73. 73.
    Strand SE, Persson BR. Quantitative lymphoscintigraphy I: basic concepts for optimal uptake of radiocolloids in the parasternal lymph nodes of rabbits. J Nucl Med 1979, 20: 1038–46.PubMedGoogle Scholar
  74. 74.
    Allen JF. An improved technetium-99 m generator for medical applications. Int J Appl Radiat Isot 1965, 16: 332–4.PubMedGoogle Scholar
  75. 75.
    Dufresne EN, Kaplan WD, Zimmerman RE, Rose CM. The application of internal mammary lymphoscintigraphy to planning of radiation therapy. J Nucl Med 1980, 21: 697–9.PubMedGoogle Scholar
  76. 76.
    Pearlman AW. Abdominal lymph node scintiscanning with radioactive gold (Au198) for evaluation and treatment of patients with lymphoma. Am J Roentgenol Radium Ther Nucl Med 1970, 109: 780–92.PubMedGoogle Scholar
  77. 77.
    Vassallo P, Wernecke K, Roos N, Peters PE. Differentiation of benign from malignantsuperficial lymphadenopathy: the role of high-resolution US. Radiology 1992 Apr; 183(1): 215–20.PubMedGoogle Scholar
  78. 78.
    Tregnaghi A, De Candia A, Calderone M, et al. Ultrasonographic evaluation of superficial lymph node metastases in melanoma. Eur J Radiol 1997 May, ;4(3): 216–21.Google Scholar
  79. 79.
    Choi SH, Kono Y, Corbeil J, Lucidarme O, Mattrey RF. Model to quantify lymph node enhancement on indirect sonographic lymphography. AJR Am J Roentgenol 2004, 183: 513–7.PubMedGoogle Scholar
  80. 80.
    Suga K, Yuan Y, Okada M, et al. Breast sentinel lymph node mapping at CT lymphography with iopamidol: preliminary experience. Radiology 2004, 230: 543–52.PubMedGoogle Scholar
  81. 81.
    Minato M, Hirose C, Sasa M, Nishitani H, Hirose Y, Morimoto T. 3-dimensional computed tomography lymphography-guided identification of sentinel lymph nodes in breast cancer patients using subcutaneous injection of nonionic contrast medium: a clinical trial. J Comput Assist Tomogr 2004, 28: 46–51.PubMedGoogle Scholar
  82. 82.
    Barrett T, Choyke PL, Kobayashi H. Imaging of the lymphatic system: new horizons. Contrast Media Mol Imaging 2006, 1: 230–45.PubMedGoogle Scholar
  83. 83.
    Anzai Y. Superparamagnetic iron oxide nanoparticles: nodal metastases and beyond. Top Magn Reson Imaging 2004, 15: 103–11.PubMedGoogle Scholar
  84. 84.
    Saokar A, Braschi M, Harisinghani MG. Lymphotrophic nanoparticle enhanced MR imaging (LNMRI) for lymph node imaging. Abdom Imaging 2006, 31: 660–7.PubMedGoogle Scholar
  85. 85.
    Fujimoto Y, Okuhata Y, Tyngi S, Namba Y, Oku N. Magnetic resonance lymphography of profundus lymph nodes with liposomal gadolinium-diethylenetriamine pentaacetic acid. Biol. Pharm. Bull 2000, 23: 97–100.PubMedGoogle Scholar
  86. 86.
    Misselwitz B, Sachse A. Interstitial MR lymphography using Gd-carrying liposomes. Acta Radiol 1997, 412: 51–55.Google Scholar
  87. 87.
    Misselwitz B, Schmitt-Willich H, Michaelis M, Oellinger JJ. Interstitial magnetic resonance lymphography using a polymeric t1 contrast agent: initial experience with Gadomer-17. Invest Radiol 2002, 37: 146–51.PubMedGoogle Scholar
  88. 88.
    Pathak AP, Artemov D, Neeman M, Bhujwalla ZM. Lymph node metastasis in breast cancer xenografts is associated with increased regions of extravascular drain, lymphatic vessel area, and invasive phenotype. Cancer Res 2006, 66: 5151–8.PubMedGoogle Scholar
  89. 89.
    Kobayashi H, Kawamoto S, Sakai Y, et al. Lymphatic drainage imaging of breast cancer in mice by micromagnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst 2004, 96: 703–8.PubMedGoogle Scholar
  90. 90.
    Kobayashi H, Kawamoto S, Brechbiel MW, et al. Detection of lymph node involvement in hematologic malignancies using micromagnetic resonance lymphangiography with a gadolinum-labeled dendrimer nanoparticle. Neoplasia 2005, 7: 984–91.PubMedGoogle Scholar
  91. 91.
    Kobayashi H, Kawamoto S, Choyke PL, et al. Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography. Magn Reson Med 2003, 50: 758–66.PubMedGoogle Scholar
  92. 92.
    Talanov VS, Regino CA, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 2006, 6: 1459–63.PubMedGoogle Scholar
  93. 93.
    Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 2006, 21: 1104–8.PubMedGoogle Scholar
  94. 94.
    Marckmann P, Skov L, Rossen K, et al. Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 2006, 17: 2359–62.PubMedGoogle Scholar
  95. 95.
    Carrington C. Optical imaging sheds light on cancer’s signature—regional blood flow and tissue oxygenization measures may permit earlier breast cancer detection. Diagnost Imag Accessed June 2004; Scholar
  96. 96.
    Dahan M, Laurence T, Pinaud F, et al. Time-gated biological imaging by use of colloidal quantum dots. Opt Lett 2001, 26: 825–7.PubMedGoogle Scholar
  97. 97.
    Derfus AM, Chan WCW, Bhatia SN. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 2004, 4: 11–8.Google Scholar
  98. 98.
    Hild WA, Breunig M, Goepferich A. Quantum dots – nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 2008, 68: 153–68;PubMedGoogle Scholar
  99. 99.
    Kim S, Lim YT, Soltesz EG, De Grand AM, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004, 22: 93–7.PubMedGoogle Scholar
  100. 100.
    Gopee NV, Roberts DW, Webb P, et al. Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 2007, 98: 249–57.PubMedGoogle Scholar
  101. 101.
    Ballou B, Ernst LA, Andreko S, et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 2007, 18: 389–96.PubMedGoogle Scholar
  102. 102.
    Frangioni JV, Kim SW, Ohnishi S, Kim S, Bawendi MG. Sentinel lymph node mapping with type-II quantum dots. Methods Mol Biol 2007, 374: 147–60.PubMedGoogle Scholar
  103. 103.
    Parungo CP, Soybel DI, Colson YL, et al. Lymphatic drainage of the peritoneal space: a pattern dependent on bowel lymphatics. Ann Surg Oncol 2007, 14: 286–98.PubMedGoogle Scholar
  104. 104.
    Parungo CP, Colson YL, Kim SW, et al. Sentinel lymph node mapping of the pleural space. Chest 2005, 127: 1799–804.PubMedGoogle Scholar
  105. 105.
    Knapp DW, Adams LG, Degrand AM, et al. Sentinel lymph node mapping of invasive urinary bladder cancer in animal models using invisible light. Eur Urol 2007; 52: 1700–8.PubMedGoogle Scholar
  106. 106.
    Soltesz EG, Kim S, Kim SW, et al. Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 2006, 13: 386–96.PubMedGoogle Scholar
  107. 107.
    Soltesz EG, Kim S, Laurence RG, et al. Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann Thorac Surg 2005, 79: 269–77.PubMedGoogle Scholar
  108. 108.
    Hama Y, Koyama Y, Urano Y, Choyke PL, Kobayashi H. Two-color lymphatic mapping using Ig-conjugated near infrared optical probes. J Invest Dermatol 2007, 127: 2351–6.PubMedGoogle Scholar
  109. 109.
    Kobayashi H, Hama Y, Koyama Y, et al. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 2007, 7: 1711–16.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Molecular Imaging Program, National Cancer Institute (NCI)BethesdaUSA

Personalised recommendations