Advertisement

New Animal Models of Lymphangiogenesis

Chapter
  • 508 Downloads
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 13)

Abstract

The discovery of new genes, genetic pathways and drug targets involved in the formation of lymphatic vessels and capillaries has long been hampered by the absence of a small model organism amenable to large scale genetic and pharmacological screening. The recent description of functional and conserved lymphatic vascular systems in the two small animal models Xenopus laevis (the African clawed frog) and Danio rerio (the zebrafish) now opens up the possibility to exploit these models for the study of developmental lymphangiogenesis. In this chapter we will describe the discovery and characterisation of the lymphatic vasculature in both frog and fish models. We will also describe and compare the available genetic tools for the study of lymphangiogenesis in these new model systems.

Key words

Lymphatic Vasculature Lymphangiogenesis Zebrafish Xenopus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam A, Bartfai R, Lele Z, Krone PH, Orban L. Heat-inducible expression of a reporter gene detected by transient assay in zebrafish. Exp Cell Res 2000, 256: 282–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005, 438: 946–53.PubMedCrossRefGoogle Scholar
  3. 3.
    Baldwin AL, Ferrer P, Rozum JS, Gore RW. Regulation of water balance between blood and lymph in the frog, Rana pipiens. Lymphology 1993, 26: 4–18.PubMedGoogle Scholar
  4. 4.
    Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CD, Morris JP, Liu TX, Schulte-Merker S, Kanki JP, Plasterk R, Zon LI, Look AT. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci USA 2005, 102: 407–12.PubMedCrossRefGoogle Scholar
  5. 5.
    Bossi E, Fabbrini MS, Ceriotti A. Exogenous protein expression in Xenopus oocytes: basic procedures. Methods Mol Biol 2007, 375: 107–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Carruthers S, Stemple DL. Genetic and genomic prospects for Xenopus tropicalis research. Semin Cell Dev Biol 2006, 17: 146–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Cleaver O, Tonissen KF, Saha MS, Krieg PA. Neovascularization of the Xenopus embryo. Dev Dyn 1997, 210: 66–77.PubMedCrossRefGoogle Scholar
  8. 8.
    Cooper E. Lympho-myeloid organs of Amphibia. I. Appearance during larval and adult stages of Rana catesbeiana. J Morphol 1967a, 122: 381–97.PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper E. Lympho-myeloid organs of Amphibia. II. Vasculature in larval and adult Rana catesbeiana. J Morphol 1967b, 123: 463–79.PubMedCrossRefGoogle Scholar
  10. 10.
    Covassin LD, Villefranc JA, Kacergis MC, Weinstein BM, Lawson ND. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci USA 2006, 103: 6554–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 2007, 236: 1025–35.PubMedCrossRefGoogle Scholar
  12. 12.
    Devic E, Paquereau L, Vernier P, Knibiehler B, Audigier Y. Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis. Mech Dev 1996, 59: 129–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 1996, 123: 37–46.PubMedGoogle Scholar
  14. 14.
    Dumont DJ, Gradwohl GJ, Fong GH, Auerbach R, Breitman ML. The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene 1993, 8: 1293–301.PubMedGoogle Scholar
  15. 15.
    Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 1994, 8: 1897–909.PubMedCrossRefGoogle Scholar
  16. 16.
    Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998, 282: 946–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML. tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 1992, 7: 1471–80.PubMedGoogle Scholar
  18. 18.
    Eisen JS. Zebrafish make a big splash. Cell 1996, 87: 969–77.PubMedCrossRefGoogle Scholar
  19. 19.
    Eisen JS, Smith JC Controlling morpholino experiments: don’t stop making antisense. Development 2008, 135: 1735–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Faucherre A, Taylor GS, Overvoorde J, Dixon JE, Hertog JD Zebrafish pten genes have overlapping and non-redundant functions in tumorigenesis and embryonic development. Oncogene 2008, 27: 1079–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Feng H, Langenau DM, Madge JA, Quinkertz A, Gutierrez A, Neuberg DS, Kanki JP, Look AT. Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. Br J Haematol 2007, 138: 169–75.PubMedCrossRefGoogle Scholar
  22. 22.
    Frohnhofer HG. Table of zebrafish mutations. In Zebrafish: Practical approach (Dahm R. Nusslein-Volhard C, Eds.), pp. 237–81. Oxford University Press, New York, 2002.Google Scholar
  23. 23.
    Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002, 3: 411–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Geisler R. Mapping and cloning. In Zebrafish: Practical approach (Nusslein-Volhard C, Dahm R, Eds.), pp 175–212. Oxford University Press, New York, 2002Google Scholar
  25. 25.
    Gerli R, Ibba L, Fruschelli C. Ultrastructural cytochemistry of anchoring filaments of human lymphatic capillaries and their relation to elastic fibers. Lymphology 1991, 24: 105–12.PubMedGoogle Scholar
  26. 26.
    Goda T, Abu-Daya A, Carruthers S, Clark MD, Stemple DL, Zimmerman LB. Genetic screens for mutations affecting development of Xenopus tropicalis. PLoS Genet 2006, 2: e91.PubMedCrossRefGoogle Scholar
  27. 27.
    Gupta S, Zhu H, Zon LI, Evans T. BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis. Development 2006, 133: 2177–87.PubMedCrossRefGoogle Scholar
  28. 28.
    Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 1996, 123: 1–36.PubMedGoogle Scholar
  29. 29.
    Ho RK, Kane DA. Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors. Nature 1990, 348: 728–30.PubMedCrossRefGoogle Scholar
  30. 30.
    Hogan BM, Layton JE, Pyati UJ, Nutt SL, Hayman JW, Varma S, Heath JK, Kimelman D, Lieschke GJ. Specification of the primitive myeloid precursor pool requires signaling through Alk8 in zebrafish. Curr Biol 2006, 16: 506–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Hong YK, Harvey N, Noh YH, Schacht V, Hirakawa S, Detmar M, Oliver G. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002, 225: 351–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Iraha F, Saito Y, Yoshida K, Kawakami M, Izutsu Y, Daar IO, Maeno M. Common and distinct signals specify the distribution of blood and vascular cell lineages in Xenopus laevis embryos. Dev Growth Differ 2002, 44: 395–407.PubMedCrossRefGoogle Scholar
  33. 33.
    Isogai S, Horiguchi M, Weinstein BM. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 2001, 230: 278–301.PubMedCrossRefGoogle Scholar
  34. 34.
    Isogai S, Lawson ND, Torrealday S, Horiguchi M, Weinstein BM. Angiogenic network formation in the developing vertebrate trunk. Development 2003, 130: 5281–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997, 276: 1423–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Jin SW, Herzog W, Santoro MM, Mitchell TS, Frantsve J, Jungblut B, Beis D, Scott IC, DAmico LA, Ober EA, Verkade H, Field HA, Chi NC, Wehman AM, Baier H, Stainier DY. A transgene-assisted genetic screen identifies essential regulators of vascular development in vertebrate embryos. Dev Biol 2007, 307: 29–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004, 5: 74–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Karpanen T, Wirzenius M, Makinen T, Veikkola T, Haisma HJ, Achen MG, Stacker SA, Pytowski B, Yla-Herttuala S, Alitalo K. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol 2006, 169: 708–18.PubMedCrossRefGoogle Scholar
  39. 39.
    Kawakami K. Transposon tools and methods in zebrafish. Dev Dyn 2005, 234: 244–54.PubMedCrossRefGoogle Scholar
  40. 40.
    Kirkin V, Mazitschek R, Krishnan J, Steffen A, Waltenberger J, Pepper MS, Giannis A, Sleeman JP. Characterization of indolinones which preferentially inhibit VEGF-C- and VEGF-D-induced activation of VEGFR-3 rather than VEGFR-2. Eur J Biochem 2001, 268: 5530–40.PubMedCrossRefGoogle Scholar
  41. 41.
    Kobel HR. Allopolyploid speciation. In The Biology of Xenopus. (Tinsley RC, Kobel HR, Eds.), pp. 391–401. Clarendon Press, Oxford., 1996Google Scholar
  42. 42.
    Krotoski DM, Reinschmidt DC, Tompkins R. Developmental mutants isolated from wild-caught Xenopus laevis by gynogenesis and inbreeding. J Exp Zool 1985, 233: 443–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Küchler AM, Gjini E, Peterson-Maduro J, Cancilla B, Wolburg H, Schulte-Merker S. Development of the zebrafish lymphatic system requires VEGFC signaling. Curr Biol 2006, 16: 1244–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V, Alitalo K. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 1996, 122: 3829–37.PubMedGoogle Scholar
  45. 45.
    Lane CD. The fate of genes, messengers, and proteins introduced into Xenopus oocytes. Curr Top Dev Biol 1983, 18: 89–116.PubMedCrossRefGoogle Scholar
  46. 46.
    Langenau DM, Feng H, Berghmans S, Kanki JP, Kutok JL, Look AT. Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2005, 102: 6068–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI, Look AT. Myc-induced T cell leukemia in transgenic zebrafish. Science 2003, 299: 887–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 2002, 248: 307–18.PubMedCrossRefGoogle Scholar
  49. 49.
    Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Breant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas JL. VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci 2006, 9: 340–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Le X, Langenau DM, Keefe MD, Kutok JL, Neuberg DS, Zon LI. Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish. Proc Natl Acad Sci USA 2007, 104: 9410–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Lyons MS, Bell B, Stainier D, Peters KG. Isolation of the zebrafish homologues for the tie-1 and tie-2 endothelium-specific receptor tyrosine kinases. Dev Dyn 1998, 212: 133–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Makinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ, Kauppinen R, Jackson DG, Kubo H, Nishikawa S, Yla-Herttuala S, Alitalo K. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001, 7: 199–205.PubMedCrossRefGoogle Scholar
  53. 53.
    McCallum CM, Comai L, Greene EA, Henikoff S. Targeted screening for induced mutations. Nat Biotechnol 2000a, 18: 455–7.PubMedCrossRefGoogle Scholar
  54. 54.
    McCallum CM, Comai L, Greene EA, Henikoff S. Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 2000b, 123: 439–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y, Maekawa H, Kimura Y, Ohmura M, Miyamoto T, Nozawa S, Koh GY, Alitalo K, Suda T. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood 2005, 105: 4649–56.PubMedCrossRefGoogle Scholar
  56. 56.
    Nasevicius A, Ekker SC. Effective targeted gene ’knockdown’ in zebrafish. Nat Genet 2000, 26: 216–20.PubMedCrossRefGoogle Scholar
  57. 57.
    Ny A, Koch M, Schneider M, Neven E, Tong RT, Maity S, Fischer C, Plaisance S, Lambrechts D, Heligon C, Terclavers S, Ciesiolka M, Kalin R, Man WY, Senn I, Wyns S, Lupu F, Brandli A, Vleminckx K, Collen D, Dewerchin M, Conway EM, Moons L, Jain RK, Carmeliet P. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med 2005, 11: 998–1004.PubMedGoogle Scholar
  58. 58.
    Ober EA, Olofsson B, Makinen T, Jin SW, Shoji W, Koh GY, Alitalo K, Stainier DY. Vegfc is required for vascular development and endoderm morphogenesis in zebrafish. EMBO Rep 2004, 5: 78–84.PubMedCrossRefGoogle Scholar
  59. 59.
    Ober EA, Verkade H, Field HA, Stainier DY. Mesodermal Wnt2b signalling positively regulates liver specification. Nature 2006, 442: 688–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Papoutsi M, Tomarev SI, Eichmann A, Prols F, Christ B, Wilting J. Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev Dyn 2001, 222: 238–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CD, Aster JC, Granter SR, Look AT, Lee C, Fisher DE, Zon LI. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 2005, 15: 249–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Peterson RT, Shaw SY, Peterson TA, Milan DJ, Zhong TP, Schreiber SL, MacRae CA, Fishman MC. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 2004, 22: 595–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Pham VN, Roman BL, Weinstein BM. Isolation and expression analysis of three zebrafish angiopoietin genes. Dev Dyn 2001, 221: 470–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM. Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 2002, 129: 3009–19.PubMedGoogle Scholar
  65. 65.
    Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoraci duct in the pig. Am J Anat 1902, 1: 367–89.CrossRefGoogle Scholar
  66. 66.
    Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995, 376: 70–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Scavelli C, Weber E, Agliano M, Cirulli T, Nico B, Vacca A, Ribatti D. Lymphatics at the crossroads of angiogenesis and lymphangiogenesis. J Anat 2004, 204: 433–49.PubMedCrossRefGoogle Scholar
  68. 68.
    Scheer N, Groth A, Hans S, Campos-Ortega JA. An instructive function for Notch in promoting gliogenesis in the zebrafish retina. Development 2001, 128: 1099–107.PubMedGoogle Scholar
  69. 69.
    Scheer N, Riedl I, Warren JT, Kuwada JY, Campos-Ortega JA. A quantitative analysis of the kinetics of Gal4 activator and effector gene expression in the zebrafish. Mech Dev 2002, 112: 9–14.PubMedCrossRefGoogle Scholar
  70. 70.
    Schneider M, Othman-Hassan K, Christ B, Wilting J. Lymphangioblasts in the avian wing bud. Dev Dyn 1999, 216: 311–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Shepard JL, Amatruda JF, Finkelstein D, Ziai J, Finley KR, Stern HM, Chiang K, Hersey C, Barut B, Freeman JL, Lee C, Glickman JN, Kutok JL, Aster JC, Zon LI. A mutation in separase causes genome instability and increased susceptibility to epithelial cancer. Genes Dev 2007, 21: 55–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Shepard JL, Amatruda JF, Stern HM, Subramanian A, Finkelstein D, Ziai J, Finley KR, Pfaff KL, Hersey C, Zhou Y, Barut B, Freedman M, Lee C, Spitsbergen J, Neuberg D, Weber G, Golub TR, Glickman JN, Kutok JL, Aster JC, Zon LI. A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc Natl Acad Sci USA 2005, 102: 13194–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Sparrow DB, Latinkic B, Mohun TJ. A simplified method of generating transgenic Xenopus. Nucleic Acids Res 2000, 28: E12.PubMedCrossRefGoogle Scholar
  74. 74.
    Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, Oliver G. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 2007, 21: 2422–32.PubMedCrossRefGoogle Scholar
  75. 75.
    Steffensen JF, Lomholt JP. The secondary vascular system. In Fish Physiology (Hoar WS, Randall DJ, Farrell AP, Eds.), Vol. XII, pp. 185–217. Academic Press, San Diego, 1992.Google Scholar
  76. 76.
    Summerton J. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochem Biophys Acta 1999, 1489: 141–58.PubMedGoogle Scholar
  77. 77.
    Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 1997, 7: 187–95.PubMedGoogle Scholar
  78. 78.
    Tammela T, Saaristo A, Lohela M, Morisada T, Tornberg J, Norrmen C, Oike Y, Pajusola K, Thurston G, Suda T, Yla-Herttuala S, Alitalo K. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood 2005, 105: 4642–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS. I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 2002, 118: 91–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Thompson MA, Ransom DG, Pratt SJ, MacLennan H, Kieran MW, Detrich HW, 3rd, Vail B, Huber TL, Paw B, Brownlie AJ, Oates AC, Fritz A, Gates MA, Amores A, Bahary N, Talbot WS, Her H, Beier DR, Postlethwait JH, Zon LI. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol 1998, 197: 248–69.PubMedCrossRefGoogle Scholar
  81. 81.
    Thummel R, Burket CT, Brewer JL, Sarras MP, Jr., Li L, Perry M, McDermott JP, Sauer B, Hyde DR, Godwin AR. Cre-mediated site-specific recombination in zebrafish embryos. Dev Dyn 2005, 233: 1366–77.PubMedCrossRefGoogle Scholar
  82. 82.
    Tomlinson ML, Field RA, Wheeler GN. Xenopus as a model organism in developmental chemical genetic screens. Mol Biosyst 2005, 1: 223–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Tymowska L. Polyploidy and cytogenetic variation in frogs of the genus Xenopus. In Amphibian Cytogenetics and Evolution (Green DS, Sessions SK, Eds.), pp. 259–97. Academic Press, San Diego, 1991.Google Scholar
  84. 84.
    Valasek P, Macharia R, Neuhuber WL, Wilting J, Becker DL, Patel K. Lymph heart in chick–somitic origin, development and embryonic oedema. Development 2007, 134: 4427–36.PubMedCrossRefGoogle Scholar
  85. 85.
    Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG, Stacker SA, Alitalo K. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. Embo J 2001, 20: 1223–31.PubMedCrossRefGoogle Scholar
  86. 86.
    Veikkola T, Lohela M, Ikenberg K, Makinen T, Korff T, Saaristo A, Petrova T, Jeltsch M, Augustin HG, Alitalo K. Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. Faseb J 2003, 17: 2006–13.PubMedCrossRefGoogle Scholar
  87. 87.
    Vogeli KM, Jin SW, Martin GR, Stainier DY. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula. Nature 2006, 443: 337–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH. Target-selected inactivation of the zebrafish rag1 gene. Science 2002, 297: 99–102.PubMedCrossRefGoogle Scholar
  89. 89.
    Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E. Efficient target-selected mutagenesis in zebrafish. Genome Res 2003, 13: 2700–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999, 98: 769–78.PubMedCrossRefGoogle Scholar
  91. 91.
    Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. Embo J 2002, 21: 1505–13.PubMedCrossRefGoogle Scholar
  92. 92.
    Wilting J, Aref Y, Huang R, Tomarev SI, Schweigerer L, Christ B, Valasek P, Papoutsi M. Dual origin of avian lymphatics. Dev Biol 2006, 292: 165–73.PubMedCrossRefGoogle Scholar
  93. 93.
    Yan YL, Miller CT, Nissen RM, Singer A, Liu D, Kirn A, Draper B, Willoughby J, Morcos PA, Amsterdam A, Chung BC, Westerfield M, Haffter P, Hopkins N, Kimmel C, Postlethwait JH, Nissen R. A zebrafish sox9 gene required for cartilage morphogenesis. Development 2002, 129: 5065–79.PubMedGoogle Scholar
  94. 94.
    Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. Live imaging of lymphatic development in the zebrafish. Nat Med 2006, 12: 711–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002, 129: 4797–806.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Hubrecht Institute (KNAW), University Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations