Insight into Lymphatic Vasculature Development

Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 13)


Our understanding of the genes and mechanisms controlling the formation of the lymphatic vasculature during embryonic development has improved a great deal during the last decade. The availability of molecular markers that allow us to distinguish the lymphatic vasculature from the blood vasculature and the generation of mouse models with various degrees of lymphatic defects have been instrumental to the progress in this field. In this chapter, we highlight some of the key molecular players that regulate the development of the lymphatic vasculature and some available mouse models of lymphatic disorders.

Key words

Lymphatic Development Mouse Prox1 Embryo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science New York, NY 2003, 299: 247–51.Google Scholar
  2. 2.
    Ambrose C. Immunology’s first priority dispute—an account of the 17th-century Rudbeck–Bartholin feud. Cell Immunol 2006, 242: 1.PubMedCrossRefGoogle Scholar
  3. Aselli G. De Lactibus Sive Lacteis Venis, Quarto Vasorum Mesaraicorum Genere, 1627.Google Scholar
  4. 4.
    Ashraf K, Raza SS, Ashraf O, Memon W, Memon A, Zubairi TA. Renal lymphangiectasia. Br J Radiol 2007, 80: e117–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Backhed F, Crawford PA, O’Donnell D, Gordon JI. Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor. Proc Natl Acad Sci USA 2007, 104: 606–11.PubMedCrossRefGoogle Scholar
  6. 6.
    Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana, E, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 2007, 205: 2349–62.CrossRefGoogle Scholar
  7. 7.
    Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS, et al.. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Met 2007, 5: 279–91.CrossRefGoogle Scholar
  8. 8.
    Bellini C, Boccardo F, Campisi C, Bonioli E. Congenital pulmonary lymphangiectasia. Orp J Rare Dis 2006, 1: 43.CrossRefGoogle Scholar
  9. 9.
    Black DD. Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: cellular events in chylomicron assembly and secretion. Am J Physiol Gastrointest Liver Physiol 2007, 293: G519–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Amann G, Kriehuber E, Diem K, Weninger W, Tschachler E, Alitalo, K, et al.. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999, 154: 385–94.PubMedGoogle Scholar
  11. 11.
    Dagenais SL, Hartsough RL, Erickson RP, Witte MH, Butler MG, Glover TW. Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-distichiasis syndrome. Gene Expr Patterns 2004, 4: 611–19.PubMedCrossRefGoogle Scholar
  12. 12.
    Evans AL, Brice G, Sotirova V, Mortimer P, Beninson J, Burnand K, Rosbotham J, Child A, Sarfarazi M. Mapping of primary congenital lymphedema to the 5q35.3 region. Am J Hum Gen 1999, 64: 547–55.CrossRefGoogle Scholar
  13. 13.
    Fang J, Dagenais SL, Erickson RP, Arlt MF, Glynn MW, Gorski JL, Seaver LH, Glover TW. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Gen 2000, 67: 1382–8.CrossRefGoogle Scholar
  14. 14.
    Faul JL, Berry GJ, Colby TV, Ruoss SJ, Walter MB, Rosen GD, Raffin TA. Thoracic lymphangiomas, lymphangiectasis, lymphangiomatosis, and lymphatic dysplasia syndrome. Am J Resp Crit Care Med 2000, 161: 1037–46.PubMedGoogle Scholar
  15. 15.
    Ferrell RE, Levinson KL, Esman JH, Kimak MA, Lawrence EC, Barmada MM, Finegold DN. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum Mol Gen 1998, 7: 2073–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, Adams RH. Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 2006, 124: 161–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson, D, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only latter role is rescued by Angiopoietin-1. Dev Cell 2002, 3: 411–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, Sleeman MW, Oliver G. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Gen 2005, 37: 1072–81.CrossRefGoogle Scholar
  19. 19.
    Havel RJ, Kane JP. Introduction: structure and metabolism of plasma lipoproteins. In The Metabolic and Molecular Bases of Inherited Diseases (Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B, Eds.), pp. 2705–16. McGraw-Hill, New York, 2001.Google Scholar
  20. 20.
    Hewson W. Experimental Inquiries. Longman, London, 1774.Google Scholar
  21. 21.
    Hillman SS, Hedrick MS, Withers PC, Drewes RC. Lymph pools in the basement, sump pumps in the attic: the anuran dilemma for lymph movement. Physiol Biochem Zool 2004, 77: 161–73.PubMedCrossRefGoogle Scholar
  22. 22.
    Hokari R, Kitagawa N, Watanabe C, Komoto S, Kurihara C, Okada Y, Kawaguchi A, Nagao S, Hibi T, Miura S. Changes in regulatory molecules for lymphangiogenesis in intestinal lymphangiectasia with enteric protein loss. J Gastroenterol Hepatol 2007, 23(7Pt2): e88–95.PubMedCrossRefGoogle Scholar
  23. 23.
    Huntington GS, McClure CFW. The anatomy and development of the jugular lymph sac in the domestic cat. Am J Anat 1910, 10: 177–311.CrossRefGoogle Scholar
  24. 24.
    Irrthum A, Devriendt K, Chitayat D, Matthijs G, Glade C, Steijlen PM, Fryns JP, Van Steensel MA, Vikkula M. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Gen 2003, 72: 1470–8.CrossRefGoogle Scholar
  25. 25.
    Johnson N, Dillard M, Baluk P, McDonald DM, Harvey NL, Frase SL, Oliver G. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 2008, 22: 3282–91.PubMedCrossRefGoogle Scholar
  26. 26.
    Kampmeier OF. Evolution and Comparative Morphology of the Lymphatic System. Thomas, Springfield, IL, 1969.Google Scholar
  27. 27.
    Kang J, Lee, I. TuJ1 (class III beta-tubulin) as phenotypic marker of lymphatic and venous valves. Cardiovasc Pathol 2006, 15: 218–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen MI, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 2001, 98: 12677–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala, H, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004, 5: 74–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Krober SM, Greinix H, Rosenmaier A, Karlhofer, F, et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006, 12: 230–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Kriederman BM, Myloyde TL, Witte MH, Dagenais SL, Witte CL, Rennels M, Bernas MJ, Lynch MT, Erickson RP, Caulder MS, et al. FOXC2 haploinsufficient mice are a model for human autosomal dominant lymphedema-distichiasis syndrome. Hum Mol Gen 2003, 12: 1179–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Lymboussaki A, Achen MG, Stacker SA, Alitalo K. Growth factors regulating lymphatic vessels. Cur Micro Immunol 2000, 251: 75–82.Google Scholar
  33. 33.
    Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K, Klein R, Wilkinson GA. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 2005, 19: 397–410.PubMedCrossRefGoogle Scholar
  34. 34.
    Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein, J, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 2005, 115: 2363–72.PubMedCrossRefGoogle Scholar
  35. 35.
    McCray S, Parrish CR. When chyle leaks: nutrition management options. Prac Gast 2004, 17: 60–76.Google Scholar
  36. 36.
    Meige H. Dystophie oedematoeuse hereditaire. Presse Med 1898, 6: 341–3.Google Scholar
  37. 37.
    Milroy WF. An undescribed variety of hereditary oedema. NY Med J 1892, 56: 503.Google Scholar
  38. 38.
    Murfee WL, Rappleye JW, Ceballos M, Schmid-Schonbein GW. Discontinuous expression of endothelial cell adhesion molecules along initial lymphatic vessels in mesentery: the primary valve structure. Lymphat Res Biol 2007, 5: 81–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Nestel PJ, Havel RJ, Bezman A. Sites of initial removal of chylomicron triglyceride fatty acids from the blood. J Clin Invest 1962, 41: 1915–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Neufeld G, Kessler O, Herzog Y. The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF. Adv Exp Med Biol 2002, 515: 81–90.PubMedGoogle Scholar
  41. 41.
    Ny A, Koch M, Schneider M, Neven E, Tong RT, Maity S, Fischer C, Plaisance S, Lambrechts D, Heligon, C, et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nat Med 2005, 11: 998–1004.PubMedGoogle Scholar
  42. 42.
    Oliver G. Lymphatic vasculature development. Nat Rev Immunol 2004, 4: 35–45.PubMedCrossRefGoogle Scholar
  43. 43.
    Oliver G, Harvey N. A stepwise model of the development of lymphatic vasculature. Ann NY Acad Sci 2002, 979: 159–65.PubMedCrossRefGoogle Scholar
  44. 44.
    Oliver G, Alitalo K. The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 2005, 21: 457–83.PubMedCrossRefGoogle Scholar
  45. Pequet J. New anatomical experiments by which the hitherto unknown receptacle of the Chyle and transmission from thence to the Subclavian Veins by the now discovered Lacteal Channels of the Thorax is plainly made appear in Brutes. London, 1653.Google Scholar
  46. 46.
    Petrova TV, Karpanen T, Norrmen C, Mellor R, Tamakoshi T, Finegold D, Ferrell R, Kerjaschki D, Mortimer P, Yla-Herttuala, S, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004, 10: 974–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Religa P, Cao R, Bjorndahl M, Zhou Z, Zhu Z, Cao Y. Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood 2005, 106: 4184–90.PubMedCrossRefGoogle Scholar
  48. Rudbeck O. Nova Exercitatio Anatomica Exhibens Ductus Hepaticos Aquosus et Vasa Glandularum Serosa Lauringer, Vasteras, 1653.Google Scholar
  49. 49.
    Sabin F. On the origin of the lymphatics system from the veins and the development of the lymph hearts and the thoracic duct in the pig. Am J Anat 1902, 1: 367–91.CrossRefGoogle Scholar
  50. 50.
    Sabin FR. The lymphatic system in human embryos, with a consideration of the system as a whole. Am J Anat 1909, 9: 43–91.CrossRefGoogle Scholar
  51. 51.
    Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafii S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003, 101: 168–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N, Williams M, Dvorak AM, Dvorak HF, Oliver, G, et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. J EMBO 2003, 22: 3546–56.CrossRefGoogle Scholar
  53. 53.
    Schmid-Schonbein GW. The second valve system in lymphatics. Lymphat Res Biol 2003, 1: 25–9; discussion 29–31.PubMedCrossRefGoogle Scholar
  54. 54.
    Sleeman JP, Krishnan J, Kirkin V, Baumann P. Markers for the lymphatic endothelium: in search of the holy grail? Microsc Res Tech 2001, 55: 61–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Srinivasan RS, Dillard M, Lagutin O, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, Oliver G. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 2007, 21: 2422–32.PubMedCrossRefGoogle Scholar
  56. 56.
    Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2002, 2: 573–83.PubMedCrossRefGoogle Scholar
  57. 57.
    Stadtfeld M, Graf T. Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing. Development 2005, 132: 203–13.PubMedCrossRefGoogle Scholar
  58. 58.
    van der Putte SC. The early development of the lymphatic system in mouse embryos. Acta Morphol Neerl Scand 1975, 13(4): 245–86.PubMedGoogle Scholar
  59. 59.
    Vignes S, Arrault M, Dupuy A. Factors associated with increased breast cancer-related lymphedema volume. Acta Oncol 2007, 46: 1138–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999, 98: 769–78.PubMedCrossRefGoogle Scholar
  61. 61.
    Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. J EMBO 2002, 21: 1505–13.CrossRefGoogle Scholar
  62. 62.
    Wilting J, Aref Y, Huang R, Tomarev SI, Schweigerer L, Christ B, Valasek P, Papoutsi M. Dual origin of avian lymphatics. Dev Biol 2006, 292: 165–73.PubMedCrossRefGoogle Scholar
  63. 63.
    Witte MH, Erickson R, Bernas M, Andrade M, Reiser F, Conlon W, Hoyme HE, Witte CL. Phenotypic and genotypic heterogeneity in familial Milroy lymphedema. Lymphology 1998, 31: 145–55.PubMedGoogle Scholar
  64. 64.
    Witte MH, Bernas MJ, Martin CP, Witte CL. Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc Res Tech 2001, 55: 122–45.PubMedCrossRefGoogle Scholar
  65. 65.
    Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. Live imaging of lymphatic development in the zebrafish. Nat Med 2006, 12: 711–16.PubMedCrossRefGoogle Scholar
  66. 66.
    Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002, 129: 4797–806.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Genetics and Tumor Cell BiologySt Jude Children’s Research HospitalMemphisUSA

Personalised recommendations