Advertisement

Lymphatic Physiology and Function in Healthy Tissue and Cancer

Chapter
  • 530 Downloads
Part of the Cancer Metastasis – Biology and Treatment book series (CMBT, volume 13)

Abstract

The lymphatic system is the primary route of metastasis for many cancers, and it is this spread through the lymphatic vessels to lymph nodes and on to distant organs that is responsible for the majority of cancer-related deaths. Lymphatics, moreso than blood vessels, are thought to provide an overall favorable route for the survival and dissemination of tumor cells due to their anatomical features and low shear stress environment, but the mechanisms and physiological parameters governing lymphatic metastasis are only beginning to be understood. How cancer cells affect and gain access to local lymphatic vessels, travel within the vessels, and enter into the lymph nodes are all topics of recent research efforts, alongside questions of how tumor cells might mimic immune cells and escape the host adaptive immune response. In this chapter we cover the basic anatomy and physiology of the lymphatic system and how it relates to cancer metastasis through the lymphatics.

Key words

Flow Lymph node VEGF-C Interstitium Lymphangion Capillary Cell trafficking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler AJ. Mechanisms of T cell tolerance and suppression in cancer mediated by tumor-associated antigens and hormones. Curr Cancer Drug Targets 2007, 7: 3–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Albini A. Tumor microenvironment, a dangerous society leading to cancer metastasis. From mechanisms to therapy and prevention. Cancer Metastasis Rev 2007, 27: 3–4.CrossRefGoogle Scholar
  3. 3.
    Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 2006, 24: 203–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 2006, 25: 989–1001.PubMedCrossRefGoogle Scholar
  5. 5.
    Bajenoff M, Egen JG, Qi H, Huang AY, Castellino F, Germain RN. Highways, byways and breadcrumbs: directing lymphocyte traffic in the lymph node. Trends Immunol 2007, 28: 346–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 2007, 204: 2349–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Brand CU, Hunziker T, Braathen LR. Isolation of human skin-derived lymph: flow and output of cells following sodium lauryl sulphate-induced contact dermatitis. Arch Dermatol Res 1992, 284: 123–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Butler TP, Gullino PM. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 1975, 35: 512–6.PubMedGoogle Scholar
  9. 9.
    Clarijs R, Schalkwijk L, Ruiter DJ, de Waal RM. Lack of lymphangiogenesis despite coexpression of VEGF-C and its receptor Flt-4 in uveal melanoma. Invest Ophthalmol Vis Sci 2001, 42: 1422–8.PubMedGoogle Scholar
  10. 10.
    Cobb RA, Steer HW. Tumour cell trapping in rat mesenteric lymph nodes. Br J Exp Pathol 1987, 68: 461–74.PubMedGoogle Scholar
  11. 11.
    Crnic I, Strittmatter K, Cavallaro U, Kopfstein L, Jussila L, Alitalo K, Christofori G. Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Res 2004, 64: 8630–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Cserr HF, Harlingberg CJ, Knopf PM. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 1992, 2: 269–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG, Ellwanger U, Garbe C, Mihm MC, Detmar M. Tumor lymphangiogenesis: a novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol 2003, 162: 1951–60.PubMedGoogle Scholar
  14. 14.
    Drake RE, Gabel JC. Effect of outflow pressure on intestinal lymph flow in unanesthetized sheep. Am J Physiol 1991, 260: 668–71.Google Scholar
  15. 15.
    Fiedler U, Christian S, Koidl S, Kerjaschki D, Emmett MS, Bates DO, Christofori G, Augustin HG. The sialomucin CD34 is a marker of lymphatic endothelial cells in human tumors. Am J Pathol 2006, 168: 1045–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Fischer M, Franzeck UK, Herrig I, Costanzo U, Wen S, Schiesser M, Hoffmann U, Bollinger A. Flow velocity of single lymphatic capillaries in human skin. Am J Physiol Heart Circ Physiol 1996, 39: H358–63.Google Scholar
  17. 17.
    Goldman J, Le TX, Skobe M, Swartz MA. Overexpression of VEGF-C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circ Res 2005, 96: 1193–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Halin C, Detmar M. An unexpected connection: lymph node lymphangiogenesis and dendritic cell migration. Immunity 2006, 24: 129–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Halin C, Tobler NE, Vigl B, Brown LF, Detmar M. VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood 2007, 110:3158–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000, 100: 57–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Harrell MI, Iritani BM, Ruddell A. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 2007, 170: 774–86.PubMedCrossRefGoogle Scholar
  22. 22.
    Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 2000, 156: 1363–80.PubMedGoogle Scholar
  23. 23.
    He YL, Karpanen T, Alitalo K. Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta Rev Cancer 2004, 1654: 3–12.Google Scholar
  24. 24.
    Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M. VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 2007, 109: 1010–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 2005, 201: 1089–99.PubMedCrossRefGoogle Scholar
  26. 26.
    Isaka N, Padera TP, Hagendoorn J, Fukumura D, Jain RK. Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Res 2004, 64: 4400–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Jain RK. Barriers to drug delivery in solid tumors. Sci Am 1994, 271: 58–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Jennbacken K, Vallbo C, Wang W, Damber JE. Expression of vascular endothelial growth factor C (VEGF-C) and VEGF receptor-3 in human prostate cancer is associated with regional lymph node metastasis. Prostate 2005, 65: 110–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Jia YT, Li ZX, He YT, Liang W, Yang HC, Ma HJ. Expression of vascular endothelial growth factor-C and the relationship between lymphangiogenesis and lymphatic metastasis in colorectal cancer. World J Gastroenterol 2004, 10: 3261–3.PubMedGoogle Scholar
  30. 30.
    Kaldjian EP, Gretz JE, Anderson AO, Shi YH, Shaw S. Spatial and molecular organization of lymph node T cell cortex: a labyrinthine cavity bounded by an epithelium-like monolayer of fibroblastic reticular cells anchored to basement membrane-like extracellular matrix. Int Immunol 2001, 13: 1243–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Koyama H, Kobayashi N, Harada M, Takeoka M, Kawai Y, Sano K, Fujimori M, Amano J, Ohhashi T, Kannagi R, Kimata K, Taniguchi S, Itano N. Significance of tumor-associated stroma in promotion of intratumoral lymphangiogenesis. Pivotal role of a hyaluronan-rich tumor microenvironment. Am J Pathol 2007, 172: 179–93.PubMedCrossRefGoogle Scholar
  32. 32.
    Leak LV. Permeability of lymphatic capillaries. J Cell Biol 1971, 50: 300–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Leak LV. Structure of lymphatic capillaries in lymph formation. Fed Proc 1976, 35: 1863–71.PubMedGoogle Scholar
  34. 34.
    Levick J. Revision of the starling principle: new views of tissue fluid balance. J Physiol 2004, 557: 704.PubMedCrossRefGoogle Scholar
  35. 35.
    Liotta LA, Kleinerman J, Saidel GM. Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res 1974, 34: 997–1004.PubMedGoogle Scholar
  36. 36.
    Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S, Walter J, Karnatz N, Lamszus K, Rogiers X, Broering DC. Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol 2007, 171: 1608–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Murakami T, Cardones AR, Hwang ST. Chemokine receptors and melanoma metastasis. J Dermatol Sci 2004, 36: 71–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Nagata H, Arai T, Soejima Y, Suzuki H, Ishii H, Hibi T. Limited capability of regional lymph nodes to eradicate metastatic cancer cells. Cancer Res 2004, 64: 8239–48.PubMedCrossRefGoogle Scholar
  39. 39.
    Nakamura Y, Yasuoka H, Tsujimoto M, Imabun S, Nakahara M, Nakao K, Nakamura M, Mori I, Kakudo K. Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat 2005, 91: 125–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Ogawa E, Takenaka K, Yanagihara K, Kurozumi M, Manabe T, Wada H, Tanaka F. Clinical significance of VEGF-C status in tumour cells and stromal macrophages in non-small cell lung cancer patients. Br J Cancer 2004, 91: 498–503.PubMedCrossRefGoogle Scholar
  41. 41.
    Ohtani O, Ohtani Y, Carati CJ, Gannon BJ. Fluid and cellular pathways of rat lymph nodes in relation to lymphatic labyrinths and Aquaporin-1 expression. Arch Histol Cytol 2003, 66: 261–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y, Choi NC, Mathisen D, Wain J, Mark EJ, Munn LL, Jain RK. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002, 296: 1883–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Padera TP, Stoll BR, Tooredman JB, Capen D, di Tomaso E, Jain RK. Pathology: cancer cells compress intratumour vessels. Nature 2004, 427: 695.PubMedCrossRefGoogle Scholar
  44. 44.
    Partanen TA, Alitalo K, Miettinen M. Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 1999, 86: 2406–12.PubMedCrossRefGoogle Scholar
  45. 45.
    Partanen TA, Arola J, Saaristo A, Jussila L, Ora A, Miettinen M, Stacker SA, Achen MG, Alitalo K. VEGF-C and VEGF-D expression in neuroendocrine cells and their receptor, VEGFR-3, in fenestrated blood vessels in human tissues. FASEB J 2000, 14: 2087–96.PubMedCrossRefGoogle Scholar
  46. 46.
    Perez-Pinera P, Chang Y, Deuel TF. Pleiotrophin, a multifunctional tumor promoter through induction of tumor angiogenesis, remodeling of the tumor microenvironment, and activation of stromal fibroblasts. Cell Cycle 2007, 6: 2877–83.PubMedGoogle Scholar
  47. 47.
    Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J, Tsarfaty I, Hudson E, Jackson DG, Petillo D, Chen J, Resau JH, Teh BT. Preparing the ‘‘soil’’: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 2006, 66: 10365–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Quick CM, Venugopal AM, Gashev AA, Zawieja DC, Stewart RH. Intrinsic pump-conduit behavior of lymphangions. Am J Physiol Regul Integr Compar Physiol 2007, 292: R1510–8.Google Scholar
  49. 49.
    Raman D, Baugher PJ, Thu YM, Richmond A. Role of chemokines in tumor growth. Cancer Lett 2007, 256: 137–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Rockson SG. Lymphedema. Am J Med 2001, 110: 288–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Ruddell A, Kelly-Spratt KS, Furuya M, Parghi SS, Kemp CJ. p19/Arf and p53 suppress sentinel lymph node lymphangiogenesis and carcinoma metastasis. Oncogene 2007, 27: 3145–55.PubMedCrossRefGoogle Scholar
  52. 52.
    Saaristo A, Partanen TA, Arola J, Jussila L, Hytonen M, Makitie A, Vento S, Kaipainen A, Malmberg H, Alitalo K. Vascular endothelial growth factor-C and its receptor VEGFR-3 in the nasal mucosa and in nasopharyngeal tumors. Am J Pathol 2000, 157: 7–14.PubMedGoogle Scholar
  53. 53.
    Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiol Rev 1990, 70: 987–1028.PubMedGoogle Scholar
  54. 54.
    Schoppmann SF, Fenzl A, Nagy K, Unger S, Bayer G, Geleff S, Gnant M, Horvat R, Jakesz R, Birner P. VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery 2006, 139: 839–46.PubMedCrossRefGoogle Scholar
  55. 55.
    Selleri S, Rumio C, Sabatino M, Marincola FM, Wang E. Tumor microenvironment and the immune response. Surg Oncol Clin N Am 2007, 16: 737–53, vii–viii.PubMedCrossRefGoogle Scholar
  56. 56.
    Shawber CJ, Funahashi Y, Francisco E, Vorontchikhina M, Kitamura Y, Stowell SA, Borisenko V, Feirt N, Podgrabinska S, Shiraishi K, Chawengsaksophak K, Rossant J, Accili D, Skobe M, Kitajewski J. Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest 2007, 117: 3369–82.PubMedCrossRefGoogle Scholar
  57. 57.
    Shields JD, Borsetti M, Rigby H, Harper SJ, Mortimer PS, Levick JR, Orlando A, Bates DO. Lymphatic density and metastatic spread in human malignant melanoma. Br J Cancer 2004, 90: 693–700.PubMedCrossRefGoogle Scholar
  58. 58.
    Shields JD, Emmett MS, Dunn DB, Joory KD, Sage LM, Rigby H, Mortimer PS, Orlando A, Levick JR, Bates DO. Chemokine-mediated migration of melanoma cells towards lymphatics – a mechanism contributing to metastasis. Oncogene 2006, 26: 2997–3005.PubMedCrossRefGoogle Scholar
  59. 59.
    Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 2007, 11:526–38.PubMedCrossRefGoogle Scholar
  60. 60.
    Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001, 7: 192–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Spiegel M, Vesti B, Shore A, Franzeck UK, Becker F, Bollinger A. Pressure of Lymphatic Capillaries in Human Skin. Am J Physiol 1992, 262: H1208–10.PubMedGoogle Scholar
  62. 62.
    Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001, 7: 186–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Swartz MA. The physiology of the lymphatic system. Adv Drug Deliv Rev 2001, 50: 3–20.PubMedCrossRefGoogle Scholar
  64. 64.
    Swartz MA, Kristensen CA, Melder RJ, Roberge S, Calautti E, Fukumura D, Jain RK. Cells shed from tumours show reduced clonogenicity, resistance to apoptosis, and in vivo tumorigenicity. Br J Cancer 1999, 81: 756–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Trzewik J, Mallipattu SK, Artmann GM, Delano FA, Schmid-Schonbein GW. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J 2001, 15: 1711–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Van den Eynden GG, Van der Auwera I, Van Laere SJ, Huygelen V, Colpaert CG, van Dam P, Dirix LY, Vermeulen PB, Van Marck EA. Induction of lymphangiogenesis in and around axillary lymph node metastases of patients with breast cancer. Br J Cancer 2006, 95: 1362–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Von der Weid PY, Zawieja DC. Lymphatic smooth muscle: the motor unit of lymph drainage. Int J Biochem Cell Biol 2004, 36: 1147–53.PubMedCrossRefGoogle Scholar
  68. 68.
    Wong SY, Haack H, Crowley D, Barry M, Bronson RT, Hynes RO. Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res 2005, 65: 9789–98.PubMedCrossRefGoogle Scholar
  69. 69.
    Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K, Eichmann A. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002, 129: 4797–806.PubMedGoogle Scholar
  70. 70.
    Zawieja DC, Davis KL, Schuster R, Hinds WM, Granger HJ. Distribution, propagation, and coordination of contractile activity in lymphatics. Am J Physiol 1993, 264: H1283–91PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations