Skip to main content

Importance of Genetic Environment for Recombinant Gene Expression

  • Chapter
  • First Online:
Book cover Cell Line Development

Part of the book series: Cell Engineering ((CEEN,volume 6))

Abstract

Production of biological (protein)-based therapeutics offers fundamental challenges. The ability to generate unique life-saving therapies has been engaged by many commercial concerns, mainly using eukaryotic (mammalian) cell culture platforms. Genes encoding the valuable biopharmaceuticals are introduced into the host cell where they integrate into the cellular genome. What goes on within the nucleus is no longer a black box but it has become clear over the last decade that we have not yet begun to fully appreciate the complexity of this sub-cellular compartment and there remains significant scope to further optimise this stage of commercial bioprocessing. This review highlights the current vision of the eukaryotic nucleus in relation to its role as the controller of expression of genes that are introduced for production of a desired product. The layers of interwoven complexity – eu- and hetero-chromatin, epigenetic marking of genes and genomes, nucleosomes, expression factories and chromosome territories – will be described. As this knowledge base has accumulated it has led to the use of approaches that seek to maximise the expression of introduced genes, using a rationalised understanding of nuclear architecture and higher level genome regulation.

The past decade has seen step-changes in our perception of the eukaryotic nucleus in terms of structural environments and, consequently, the potential for previously unconsidered modes of regulation of gene expression. Driven by technological developments, that have permitted increased understanding of nuclear structure, we perceive that there are layers of complexity in eukaryotic transcription control that may have the potential to either thwart or enhance cell gene engineering. The existence of regulation at the level of nuclear structure and genomic environment has relevance to approaches that utilise eukaryotic cells as hosts for expression of exogenous genes (as in the use of mammalian cells as “factories” for production of biopharmaceuticals). This level of regulation has consequences for the extent and stability of expression of genes introduced into cells (either genes that encode for the desired biopharmaceutical or genes encoding for proteins predicted to enhance the “factory” activity of the cell) and for endogenous cellular genes (for which expression may be modified in response to incorporation of foreign genes into specific areas of the genomic environment, with potential consequences for cellular function).

This review will highlight current understanding of the structural relationships between chromosomes, genes and the physical entity that comprises the eukaryotic nucleus. Current perceptions have been developed from information obtained from a number of experimental eukaryotic systems. After describing the generic model for relationships between nuclear structure and gene regulation, I will discuss the implications for production of biopharmaceuticals in relation to commercially-relevant eukaryotic cells (predominantly Chinese Hamster ovary, CHO, and NS0 myeloma). Within this context there are very clear linkages between our increasing understanding of genomic environment and current developments related to incorporation of specific DNA sequences within expression vectors for use with mammalian cell lines (Chapter 1, this volume). This will be discussed, as appropriate, along with the forward vision of how information on genomic environment may be used for further rationalised optimisation of future expression platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S, Brickner JH (2007) Regulation and epigenetic control of transcription at the nuclear periphery. Trends Genet 23:396–402

    Article  PubMed  CAS  Google Scholar 

  • Antoniou M, Harland L, Mustoe T et al (2003) Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics 82:269–279

    Article  PubMed  CAS  Google Scholar 

  • Backliwal G, Hildinger M, Kuettel I et al (2008) Valproic acid: A viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol Bioeng 101:183–189

    Article  CAS  Google Scholar 

  • Barnes LM, Bentley CM, Dickson AJ (2000) Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 32:109–123

    Article  PubMed  CAS  Google Scholar 

  • Barnes LM, Bentley CM, Dickson AJ (2003) Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng 81:631–639

    Article  PubMed  CAS  Google Scholar 

  • Barnes LM, Bentley CM, Dickson AJ (2004) Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells. Biotechnol Bioeng 85:115–121

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  • Birch JR, Racher AJ (2006) Antibody production. Adv Drug Deliv Rev 58:671–685

    Article  PubMed  CAS  Google Scholar 

  • Boyle S, Gilchrist S, Bridger JM et al (2001) The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet 10:211–219

    Article  PubMed  CAS  Google Scholar 

  • Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests a role in translocations and transcription-dependent associations. PLoS Biol 4:780–788

    Article  CAS  Google Scholar 

  • Brink MC, van der Velden Y, de Leeuw W et al (2006) Truncated HP1 lacking a functional chromodomain induces heterochromatization upon in vivo targeting. Histochem Cell Biol 125:55–61

    Article  CAS  Google Scholar 

  • Butler M (2005) Animal cell cultures: Recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    Article  PubMed  CAS  Google Scholar 

  • Carter DRF, Eskiw C, Cook PR (2008) Transcription factories. Biochem Soc Trans 36:585–589

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004) Chromatic decondensation and nuclear reorganisation of the HoxB locus upon induction of transcription. Genes Dev 18:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Chun B-H, Park S-Y, Chung N et al (2003) Enhanced production of recombinant B-domain deleted factor VIII from Chinese hamster ovary cells in propionic and butyric acids. Biotechnol Lett 25:315–319

    Article  PubMed  CAS  Google Scholar 

  • Cioce M, Lamond AI (2005) Cajal bodies: A long history of discovery. Annu Rev Cell Dev Biol 21:105–131

    Article  PubMed  CAS  Google Scholar 

  • Cook PR (1999) Organisation of replication and transcription. Science 284:1790–1795

    Article  PubMed  CAS  Google Scholar 

  • Cook PR (2002) Predicting three-dimensional genome structure from transcriptional activity. Nat Genet 32:347–352

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C, Schneider T et al (1982) Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser UV-microirradiation experiments. Hum Genet 62:201–209

    Article  PubMed  CAS  Google Scholar 

  • Derouazi M, Martinet D, Besuchet Schmutz N et al (2006) Genetic characterisation of CHO production hosts DG44 and derivative recombinant cell lines. Biochem Biophys Res Commun 340:1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Dillon N (2008) The impact of gene location in the nucleus on transcriptional regulation. Dev Cell 15:182–186

    Article  PubMed  CAS  Google Scholar 

  • Dixkens C, Posseckert G, Keller T et al (1998) Structural analysis of the amplified IFN-β and DHFR genes in a Chinese hamster ovary cell line using multicolour FISH analysis. Chromosome Res 6:329–332

    Article  PubMed  CAS  Google Scholar 

  • Faro-Trindade I, Cook PR (2006) Transcription factories: Structures conserved during differentiation and evolution. Biochem Soc Trans 341:1133–1137

    Google Scholar 

  • Ferreira J, Paolella G, Ramos C et al (1997) Spatial organisation of large-scale chromatin domains in the nucleus: A magnified view of single chromosome territories. J Cell Biol 139:1597–1610

    Article  PubMed  CAS  Google Scholar 

  • Fraser P (2006) Transcriptional control thrown in a loop. Curr Opin Genet Dev 16:490–495

    Article  PubMed  CAS  Google Scholar 

  • Fraser P, Bickmore W (2007) Nuclear organisation of the genome and the potential for gene regulation. Nature 447:413–417

    Article  PubMed  CAS  Google Scholar 

  • Fukushige S, Sauer B (1992) Genomic targeting with a positive selection LOX integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci USA 89:7905–7909

    Article  PubMed  CAS  Google Scholar 

  • Girod PA, Zhan-Zabal M, Mermod N (2005) Use of the chicken lysozyme 5′ matrix attachment region to generate high producer CHO cell lines. Biotechnol Bioeng 91:1–11

    Article  PubMed  CAS  Google Scholar 

  • Girod PA, Nguyen DQ, Calabrese D et al (2007) Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4:747–753

    Article  PubMed  CAS  Google Scholar 

  • Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: The “H3 barcode hypothesis”. Proc Natl Acad Sci USA 103:6428–6435

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Li Y, Wang YG et al (2007) An efficient and targeted gene integration system for high level antibody expression. J Immunol Methods 322:28–39

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Hassan AB, Errington RJ et al (1993) Visualisation of focal sites of transcription within human nuclei. EMBO J 12:1059–1065

    PubMed  CAS  Google Scholar 

  • Jiang Z, Sharfstein ST (2008) Sodium butyrate stimulates monoclonal antibody over-expression in CHO cells by improving gene accessibility. Biotechnol Bioeng 100:189–194

    Article  PubMed  CAS  Google Scholar 

  • Kaufman RJ (1990) Selection and co-amplification of heterologous genes in mammalian cells. Methods Enzymol 185:537–566

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Lee GM (1999) Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol Bioeng 64:741–749

    Article  PubMed  CAS  Google Scholar 

  • Kim JM, Kim JS, Park DH et al (2004) Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol 107:95–105

    Article  PubMed  CAS  Google Scholar 

  • Koduri RK, Miller JT, Thammana P (2001) An efficient homologous recombination vector pTV(I) contains a hot spot for increased recombinant protein expression in Chinese hamster ovary cells. Gene 280:87–95

    Article  PubMed  CAS  Google Scholar 

  • Kosak ST, Skok JA, Medina KL et al (2002) Subnuclear compartentalisation of immunoglobulin loci during lymphocyte development. Science 296:158–162

    Article  PubMed  CAS  Google Scholar 

  • Kwaks THJ, Otte AP (2006) Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol 24:137–142

    Article  PubMed  CAS  Google Scholar 

  • Kwaks T, Sewalt RGAB, van Blokland R et al (2005) Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells. J Biotechnol 115:35–46

    Article  PubMed  CAS  Google Scholar 

  • Lo AW, Sabatier L, Fouladi B et al (2002) DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line. Neoplasia 4:531–538

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Misteli T (2008) Locus-specific and activity-independent gene repositioning during early tumourogenesis. J Cell Biol 180:39–50

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Misteli, T, Soutoglou E (2006) Spatial genome organization in the formation of chromosomal translocations. Seminar on Cancer Biology published online October 26, 2006. 10.1016/j.sem-cancer.2006.10.008

    Google Scholar 

  • Mellor J, Dudek P, Clynes D (2008) A glimpse into the epigenetic landscape of gene regulation. Curr Opin Genet Dev 18:116–123

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2007) Beyond the sequence: Cellular organization of genome function. Cell 128:787–800

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JA, Fraser P (2008) Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev 22:20–25

    Article  PubMed  CAS  Google Scholar 

  • Needham M, Gooding C, Hudson K et al (1992) LCR/MEL – A versatile system for high-level expression of heterologous proteins in erythroid cells. Nucleic Acids Res 20:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chkalova L, Mitchell JA et al (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5:e192

    Article  PubMed  CAS  Google Scholar 

  • Otte AP, Kwaks THJ, van Blokland RJM et al (2007) Various expression-augmenting DNA elements benefit from STAR-select, a novel stringency selection system for protein expression. Biotechnol Prog 23:801–807

    PubMed  CAS  Google Scholar 

  • Pennisi E (2006) Molecular biology – Genes commute to factories before they start work. Science 312:1304

    Article  PubMed  CAS  Google Scholar 

  • Rafalska-Metcalf JU, Janicki SM (2007) Show and tell: Gene expression in living cells. J Cell Sci 120:2301–2307

    Article  PubMed  CAS  Google Scholar 

  • Ragoczy T, Bender MA, Telling A et al (2006) The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20:1447–1457

    Article  PubMed  CAS  Google Scholar 

  • Razin SV, Iarvaia OV, Sjakste N et al (2007) Chromatin domains and regulation of transcription. J Mol Biol 369:597–607

    Article  PubMed  CAS  Google Scholar 

  • Schardin M, Cremer T, Hager HD et al (1985) Specific staining of human chromosomes in Chinese hamster-X-man hybrid cell lines demonstrates interphase chromosome territories. Hum Genet 71:281–287

    Article  PubMed  CAS  Google Scholar 

  • Simonis M, Klous P, Splinter E et al (2006) Nuclear organisation of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354

    Article  PubMed  CAS  Google Scholar 

  • Spilianakis CG, Lalloti MD, Town T et al (2005) Interchromosomal associations between alternatively expressed loci. Nature 435:637–645

    Article  PubMed  CAS  Google Scholar 

  • Stadler S, Schnapp V, Mayer R et al. (2004) The architecture of chicken chromosome territories changes during differentiation. BMC Cell Biol 5: Art No. 44

    Google Scholar 

  • Van Driel R, Fransz PF, Verschure PJ (2003) The eukaryotic genome: A system regulated at different hierarchical levels. J Cell Sci 116:4067–4075

    Article  PubMed  CAS  Google Scholar 

  • Wallace JA, Felsenfeld G (2007) We gather together: Insulators and genome organization. Curr Opin Genet Dev 17:400–407

    Article  PubMed  CAS  Google Scholar 

  • Williams S, Mustoe T, Mulcahy T et al. (2005) CpG island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol 5: Art. No. 17

    Google Scholar 

  • Wlaschin KF, Hu W-S (2007) A scaffold for the Chinese hamster genome. Biotechnol Bioeng 98:429–439

    Article  PubMed  CAS  Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Cook PR (2008) Similar active genes cluster in specialised transcription factories. J Cell Biol 181:615–623

    Article  PubMed  CAS  Google Scholar 

  • Yee JC, de Leon Gatti M, Philp RJ et al (2007) Genomic and proteomic exploration of CHO and hybridoma cells under sodium butyrate treatment. Biotechnol Bioeng 99:1186–1204

    Article  CAS  Google Scholar 

  • Yoshikawa T, Nakanishi F, Ogura Y et al (2000) Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes. Biotechnol Prog 16:710–715

    Article  PubMed  CAS  Google Scholar 

  • Zahn-Zabal M, Kobr M, Girod PA et al (2001) Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87:29–42

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Dickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dickson, A.J. (2009). Importance of Genetic Environment for Recombinant Gene Expression. In: Al-Rubeai, M. (eds) Cell Line Development. Cell Engineering, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2245-5_4

Download citation

Publish with us

Policies and ethics