Skip to main content

Apoptosis and Autophagy Cell Engineering

  • Chapter
  • First Online:
Cell Line Development

Part of the book series: Cell Engineering ((CEEN,volume 6))

Abstract

Programmed cell death (apoptosis and autophagy) in cell cultures is considered an important problem to be dealt with as it affects the viable cell concentration and the product quality. This chapter describes various strategies employed to confront and prevent programmed cell death in biotechnologically important mammalian cell lines, mainly Chinese Hamster Ovary (CHO) cells, with special importance to the genetic manipulation of cells for anti-apoptosis and anti-autophagic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson L, Walum E (2007) Insulin and IGF-1 mediated inhibition of apoptosis in CHO cells grown in suspension in a protein-free medium. Altern Lab Anim 35:349–352

    PubMed  CAS  Google Scholar 

  • Akar U, Chaves-Reyez A, Barria M et al (2008) Silencing of Bcl-2 expression by small Interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 4:669–679

    PubMed  CAS  Google Scholar 

  • Al-Rubeai M, Singh RP (1998) Apoptosis in cell culture. Curr Opin Biotechnol 9:152–156

    Article  PubMed  CAS  Google Scholar 

  • Al-Rubeai M, Singh RP, Goldman MH et al (1995) Death mechanisms of animal cells in conditions of intensive agitation. Biotechnol Bioeng 45:463–472

    Article  PubMed  CAS  Google Scholar 

  • Alvarez B, Garrido E, Garcia-Sanz JA et al (2003) Phosphoinositide 3-kinase activation regulates cell division time by coordinated control of cell mass and cell cycle progression rate. J Biol Chem 278:26466–26473

    Article  PubMed  CAS  Google Scholar 

  • Arden N, Betenbaugh MJ (2004) Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol 22:174–180

    Article  PubMed  CAS  Google Scholar 

  • Arden N, Ahn SH, Vaz W et al (2007a) Chemical caspase inhibitors enhance cell culture viabilities and protein titer. Biotechnol Prog 23:506–511

    Article  PubMed  CAS  Google Scholar 

  • Arden N, Majors BS, Ahn SH et al (2007b) Inhibiting the apoptosis pathway using MDM2 in mammalian cell cultures. Biotechnol Bioeng 97:601–614

    Article  PubMed  CAS  Google Scholar 

  • Arico S, Petiot A, Bauvy C et al (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243–35246

    Article  PubMed  CAS  Google Scholar 

  • Blommaart EF, Luiken JJ, Blommaart PJ et al (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270:2320–2326

    Article  PubMed  CAS  Google Scholar 

  • Blommaart EF, Krause U, Schellens JP et al (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243:240–246

    Article  PubMed  CAS  Google Scholar 

  • Bowen ID, Lockshin RA (1981) Cell death in biology and pathology. Chapman and Hall, London

    Google Scholar 

  • Brown EJ, Schreiber SL (1996) A signaling pathway to translational control. Cell 86:517–520

    Article  PubMed  CAS  Google Scholar 

  • Buja LM, Eigenbrodt ML, Eigenbrodt EH (1993) Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch Pathol Lab Med 117:1208–1214

    PubMed  CAS  Google Scholar 

  • Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8:569–581

    Article  PubMed  CAS  Google Scholar 

  • Chang KH, Kim KS, Kim JH (1999) N-acetylcysteine increases the biosynthesis of recombinant EPO in apoptotic Chinese hamster ovary cells. Free Radic Res 30:85–91

    Article  PubMed  CAS  Google Scholar 

  • Cheng EH, Levine B, Boise LH et al (1996) Bax-independent inhibition of apoptosis by Bcl-xL. Nature 379:554–556

    Article  PubMed  CAS  Google Scholar 

  • Chiang GG, Sisk WP (2005) Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng 91:779–792

    Article  PubMed  CAS  Google Scholar 

  • Choi SS, Rhee WJ, Park TH (2005) Beneficial effect of silkworm hemolymph on a CHO cell system: Inhibition of apoptosis and increase of EPO production. Biotechnol Bioeng 91:793–800

    Article  PubMed  CAS  Google Scholar 

  • Choi SS, RheeWJ KEJ, Kim EJ et al (2006) Enhancement of recombinant protein production in Chinese hamster ovary cells through anti-apoptosis engineering using 30Kc6 gene. Biotechnol Bioeng 95:459–467

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury I, Tharakan B, Bhat GK (2008) Caspases–An update. Comp Biochem Physiol B. doi:10.1016/j.cbpb.2008.05.010.

    Google Scholar 

  • Cohen GM (1997) Caspases: The executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  • Cotter TG, Al-Rubeai M (1995) Cell death (apoptosis) in cell culture systems. Trends Biotechnol 13:150–155

    Article  PubMed  CAS  Google Scholar 

  • Coultas L, Strasser A (2003) The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 13:115–123

    Article  PubMed  CAS  Google Scholar 

  • Crea F, Sarti D, Falciani F et al (2006) Over-expression of hTERT in CHO K1 results in decreased apoptosis and reduced serum dependency. J Biotechnol 121:109–123

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio C, Valentinis B, Prisco M et al (1997) Protective effect of the insulin-like growth factor I receptor on apoptosis induced by okadaic acid. Cancer Res 57:3264–3271

    PubMed  Google Scholar 

  • deZengotita VM, Miller WM, Aunins JG et al (2000) Phosphate feeding improves high-cell-concentration NS0 myeloma culture performance for monoclonal antibody production. Biotechnol Bioeng 69:566–576

    Article  PubMed  CAS  Google Scholar 

  • Dickens M, Rogers JS, Cavanagh J et al (1997) A cytoplasmic inhibitor of the JNK signal transduction pathway. Science 277:693–696

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Martinsm LM, Kaufmann SH (1999) Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  PubMed  CAS  Google Scholar 

  • Farrow SN, Brown R (1996) New members of the Bcl-2 family and their protein partners. Curr Opin Genet Dev 6:45–49

    Article  PubMed  CAS  Google Scholar 

  • Feng Z, Zhang H, Levine AJ et al (2005) The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 102:8204–8209

    Article  PubMed  CAS  Google Scholar 

  • Feng W, Huang S, Wu H et al (2007) Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol 372:223–235

    Article  PubMed  CAS  Google Scholar 

  • Figueroa B Jr, Sauerwald TM, Mastrangelo AJ et al (2001) Comparison of Bcl-2 to a Bcl-2 deletion mutant for mammalian cells exposed to culture insults. Biotechnol Bioeng 73:211–222

    Article  PubMed  CAS  Google Scholar 

  • Figueroa B Jr, Sauerwald TM, Oyler GA et al (2003) A comparison of the properties of a Bcl-xL variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures. Metab Eng 5:230–245

    Article  PubMed  CAS  Google Scholar 

  • Figueroa B Jr, Chen S, Oyler GA et al (2004) Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnol Bioeng 85:589–600

    Article  PubMed  CAS  Google Scholar 

  • Figueroa B Jr, Ailor E, Osborne D et al (2007) Enhanced cell culture performance using inducible anti-apoptotic genes E1B–19 K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnol Bioeng 97:877–892

    Article  PubMed  CAS  Google Scholar 

  • Fuertes G, Martin De Llano JJ, Villarroya A et al (2003) Changes in the proteolytic activities of proteasomes and lysosomes in human fibroblasts produced by serum withdrawal, amino-acid deprivation and confluent conditions. Biochem J 375:75–86

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    Article  PubMed  CAS  Google Scholar 

  • Goldman MH, James DC, Ison AP et al (1997) Monitoring proteolysis of recombinant human interferon-γ during batch culture of Chinese hamster ovary cells. Cytotechnology 23:103–111

    Article  PubMed  CAS  Google Scholar 

  • Goswami J, Sinskey AJ, Steller H et al (1999) Apoptosis in batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng 62:632–640

    Article  PubMed  CAS  Google Scholar 

  • Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891–2906

    Article  PubMed  CAS  Google Scholar 

  • Harris MH, Thompson CB (2000) The role of the bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 7:1182–1191

    Article  PubMed  CAS  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  • Hwang SO, Lee GM (2008a) Autophagy and apoptosis in Chinese hamster ovary cell culture. Autophagy 4:70–72

    PubMed  Google Scholar 

  • Hwang SO, Lee GM (2008b) Nutrient deprivation induces autophagy as well as apoptosis in Chinese hamster ovary cell culture. Biotechnol Bioeng 99:678–685

    Article  PubMed  CAS  Google Scholar 

  • Ifandi V, Al-Rubeai M (2005) Regulation of cell proliferation and apoptosis in CHO-K1 cells by the coexpression of c-Myc and Bcl-2. Biotechnol Prog 21:671–677

    Article  PubMed  CAS  Google Scholar 

  • Ishaque A, Al-Rubeai M (1998) Use of intracellular pH and annexin-V flow cytometric assays to monitor apoptosis and its suppression by bcl-2 over-expression in hybridoma cell culture. J Immunol Methods 221:43–57

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Ueda H, Suzuki E (1995) Overexpression of bcl-2, apoptosis suppressing gene: Prolonged viable culture period of hybridoma and enhanced antibody production. Biotechnol Bioeng 48:118–122

    Article  PubMed  CAS  Google Scholar 

  • Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed  CAS  Google Scholar 

  • Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E et al (1997) Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3) K and PKB. Nature 385:544–548

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: A basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Kessel D, Reiners JJ Jr (2007) Initiation of apoptosis and autophagy by the Bcl-2 antagonist HA14–1. Cancer Lett 249:294–299

    Article  PubMed  CAS  Google Scholar 

  • Kim NS, Lee GM (2001) Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol Bioeng 71:184–193

    Article  CAS  Google Scholar 

  • Kim NS, Lee GM (2002a) Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng 78:217–228

    Article  PubMed  CAS  Google Scholar 

  • Kim NS, Lee GM (2002b) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J Biotechnol 95:237–248

    Article  PubMed  CAS  Google Scholar 

  • Kim YG, Kim JY, Mohan C, et al (2009) Effect of Bcl-xl overexpression on apoptosis and autophagy in Recombinant chinese Hamster overy cells under nutrient-deprived condition. Biotechnol Bioeng

    Google Scholar 

  • Kovacs AL, Grinde B, Seglen PO (1981) Inhibition of autophagic vacuole formation and protein degradation by amino acids in isolated hepatocytes. Exp Cell Res 133:431–436

    Article  PubMed  CAS  Google Scholar 

  • Ku B, Woo JS, Liang C et al (2008) Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog 4:e25

    Article  PubMed  CAS  Google Scholar 

  • Kuo PL, Hsu YL, Cho CY (2006) Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther 5:3209–3221

    Article  PubMed  CAS  Google Scholar 

  • Lai D, Fu L, Weng S et al (2004) Blocking caspase-3 activity with a U6 SnRNA promoter-driven ribozyme enhances survivability of CHO cells cultured in low serum medium and production of interferon-beta. Biotechnol Bioeng 85:20–28

    Article  PubMed  CAS  Google Scholar 

  • Lee SK, Lee GM (2003) Development of apoptosis-resistant dihydrofolate reductase-deficient Chinese hamster ovary cell line. Biotechnol Bioeng 82:872–876

    Article  PubMed  CAS  Google Scholar 

  • Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159–162

    PubMed  CAS  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  PubMed  CAS  Google Scholar 

  • Liang XH, Kleeman LK, Jiang HH et al (1998) Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596

    PubMed  CAS  Google Scholar 

  • Liang XH, Jackson S, Seaman M et al (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Feng P, Ku B et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699

    Article  PubMed  CAS  Google Scholar 

  • Lim SF, Chuan KH, Liu S et al (2006) RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Metab Eng 8:509–522

    Article  PubMed  CAS  Google Scholar 

  • Liston P, Roy N, Tamai K et al (1996) Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379:349–353

    Article  PubMed  CAS  Google Scholar 

  • Lockshin RA, Williams CM (1964) Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 10:643–649

    Article  CAS  Google Scholar 

  • Lum JJ, DeBerardinis RJ, Thompson CB (2005) Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 6:439–448

    Article  PubMed  CAS  Google Scholar 

  • Maiuri MC, Criollo A, Tasdemir E et al (2007a) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3:374–376

    PubMed  CAS  Google Scholar 

  • Maiuri MC, Le Toumelin G, Criollo A et al (2007b) Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26:2527–2539

    Article  PubMed  CAS  Google Scholar 

  • Mastrangelo AJ, Hardwick JM, Bex F et al (2000a) Part I Bcl-2 and Bcl-x(L) limit apoptosis upon infection with alphavirus vectors. Biotechnol Bioeng 67:544–554

    Article  PubMed  CAS  Google Scholar 

  • Mastrangelo AJ, Hardwick JM, Zou S et al (2000b) Part II overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnol Bioeng 67:555–564

    Article  PubMed  CAS  Google Scholar 

  • Meents H, Enenkel B, Eppenberger HM et al (2002) Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-x(L) on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnol Bioeng 80:706–716

    Article  PubMed  CAS  Google Scholar 

  • Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36:2445–2462

    Article  PubMed  CAS  Google Scholar 

  • Mercille S, Massie B (1999) Apoptosis-resistant E1B–19 K-expressing NS/0 myeloma cells exhibit increased viability and chimeric antibody productivity under perfusion culture conditions. Biotechnol Bioeng 63:529–543

    Article  PubMed  CAS  Google Scholar 

  • Miron M, Sonenberg N (2001) Regulation of translation via TOR signaling: insights from Drosophila melanogaster. J Nutr 131:2988S–29893S

    PubMed  CAS  Google Scholar 

  • Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491–2502

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yamamoto A, Hatano M et al (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152:657–68

    Article  PubMed  CAS  Google Scholar 

  • Mizushima N, Yamamoto A, Matsui M et al (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Moore A, Donahue CJ, Hooley J et al (1995) Apoptosis in CHO cell batch cultures: examination by flow cytometry. Cytotechnology 17:1–11

    Article  CAS  Google Scholar 

  • Morris AE, Schmid J (2000) Effects of insulin and LongR(3) on serum-free Chinese hamster ovary cell cultures expressing two recombinant proteins. Biotechnol Prog 16:693–697

    Article  PubMed  CAS  Google Scholar 

  • Mortimore GE, Pösö AR (1988) Amino acid control of intracellular protein degradation. Methods Enzymol 166:461–476

    Article  PubMed  CAS  Google Scholar 

  • Munzert E, Muthing J, Buntemeyer H et al (1996) Sialidase activity in culture fluid of Chinese hamster ovary cells during batch culture and its effect on recombinant human antithrombin III integrity. Biotechnol Prog 12:559–563

    Article  PubMed  CAS  Google Scholar 

  • Nivitchanyong T, Martinez A, Ishaque A et al (2007) Anti-apoptotic genes Aven and E1B–19 K enhance performance of BHK cells engineered to express recombinant factor VIII in batch and low perfusion cell culture. Biotechnol Bioeng 98:825–841

    Article  PubMed  CAS  Google Scholar 

  • Oberstein A, Jeffrey PD, Shi Y (2007) Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 282:13123–13132

    Article  PubMed  CAS  Google Scholar 

  • Oh HK, So MK, Yang J et al (2005) Effect of N-acetylcystein on butyrate-treated Chinese hamster ovary cells to improve the production of recombinant human interferon-beta-1a. Biotechnol Prog 21:1154–1164

    Article  PubMed  CAS  Google Scholar 

  • Oldham S, Hafen E (2003) Insulin/IGF and target of rapamycin signaling: A TOR de force in growth control. Trends Cell Biol 13:79–85

    Article  PubMed  CAS  Google Scholar 

  • Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  PubMed  CAS  Google Scholar 

  • Petiot A, Ogier-Denis E, Blommaart EF et al (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275:992–998

    Article  PubMed  CAS  Google Scholar 

  • Raught B, Gingras AC, Sonenberg N (2001) The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA 98:7037–7044

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124:1–6

    Article  PubMed  CAS  Google Scholar 

  • Saeki K, Yuo A, Okuma E et al (2000) Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ 7:1263–1269

    Article  PubMed  CAS  Google Scholar 

  • Salvesen GS, Riedl SJ (2008) Caspase mechanisms. Adv Exp Med Biol 615:13–23

    Article  PubMed  CAS  Google Scholar 

  • Sauerwald TM, Betenbaugh MJ, Oyler GA (2002) Inhibiting apoptosis in mammalian cell culture using the caspase inhibitor XIAP and deletion mutants. Biotechnol Bioeng 77:704–716

    Article  PubMed  CAS  Google Scholar 

  • Sauerwald TM, Oyler GA, Betenbaugh MJ (2003) Study of caspase inhibitors for limiting death in mammalian cell culture. Biotechnol Bioeng 81:329–340

    Article  PubMed  CAS  Google Scholar 

  • Sauerwald TM, Figueroa B Jr, Hardwick JM et al (2006) Combining caspase and mitochondrial dysfunction inhibitors of apoptosis to limit cell death in mammalian cell cultures. Biotechnol Bioeng 94:362–372

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  PubMed  CAS  Google Scholar 

  • Schworer CM, Mortimore GE (1979) Glucagon-induced autophagy and proteolysis in rat liver: Mediation by selective deprivation of intracellular amino acids. Proc Natl Acad Sci USA 76:3169–3173

    Article  PubMed  CAS  Google Scholar 

  • Scorrano L, Korsmeyer SJ (2003) Mechanisms of cytochrome c release by proapoptotic bcl-2 family members. Biochem Biophys Res Commun 304:437–444

    Article  PubMed  CAS  Google Scholar 

  • Scott PH, Brunn GJ, Kohn AD et al (1998) Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 95:7772–7777

    Article  PubMed  CAS  Google Scholar 

  • Seglen PO, Gordon PB (1982) 3-Methyladenine: Specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 79:1889–1892

    Article  PubMed  CAS  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N et al (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Siegel RM, Lenardo MJ (2002) Apoptosis signaling pathways. Curr Protoc Immunol. Chapter 11: 44:Unit 11.9C

    Google Scholar 

  • Simpson NH, Milner AE, Al-Rubeai M (1997) Prevention of hybridoma cell death by bcl-2 during suboptimal culture conditions. Biotechnol Bioeng 54:1–16

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Al-Rubeai M, Gregory C et al (1994) Cell death in bioreactors-a role for apoptosis. Biotechnol Bioeng 4:720–726

    Article  Google Scholar 

  • Singh RP, Finka G, Emery AN et al (1997) Apoptosis and its control in cell culture systems. Cytotechnology 3:87–93

    Article  Google Scholar 

  • Subramanian T, Chinnadurai G (2003) Pro-apoptotic activity of transiently expressed bcl-2 occurs independent of BAX and BAK. J Cell Biochem 89:1102–1114

    Article  PubMed  CAS  Google Scholar 

  • Sung YH, Lee GM (2005) Enhanced human thrombopoietin production by sodium butyrate addition to serum-free suspension culture of bcl-2-overexpressing CHO cells. Biotechnol Prog 21:50–57

    Article  PubMed  CAS  Google Scholar 

  • Sung YH, Hwang SJ, Lee GM (2005) Influence of down-regulation of caspase-3 by siRNAs on sodium-butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng 7:457–466

    Article  PubMed  CAS  Google Scholar 

  • Sung YH, Lee JS, Park SH et al (2007) Influence of co-down-regulation of caspase-3 and caspase-7 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng 5–6:452–464

    Article  CAS  Google Scholar 

  • Takeuchi H, Kondo Y, Fujiwara K et al (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346

    PubMed  CAS  Google Scholar 

  • Teige M, Weidemann R, Kretzmer G (1994) Problems with serum-free production of antithrombin III regarding proteolytic activity and product quality. J Biotechnol 34:101–105

    Article  PubMed  CAS  Google Scholar 

  • Terada S, Fukuoka K, Fujita T et al (1997) Anti-apoptotic genes, bag-1 and bcl-2, enabled hybridoma cells to survive under treatment for arresting cell cycle. Cytotechnology 25:17–23

    Article  PubMed  CAS  Google Scholar 

  • Tey BT, Singh RP, Piredda L et al (2000a) Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. J Biotechnol 79:147–159

    Article  PubMed  CAS  Google Scholar 

  • Tey BT, Singh RP, Piredda L et al (2000b) Influence of bcl-2 on cell death during the cultivation of a Chinese hamster ovary cell line expressing a chimeric antibody. Biotechnol Bioeng 8:31–43

    Article  Google Scholar 

  • Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga C, Yoshino K, Yonezawa K (2004) mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun 313:443–446

    Article  PubMed  CAS  Google Scholar 

  • Trump BF, Berezesky IK, Osornio-Vargas AR (1981) Cell death and the disease process. The role of calcium. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology. Chapman and Hall, New York

    Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  PubMed  CAS  Google Scholar 

  • Vaux DL, Haecker G, Strasser A (1994) An evolutionary perspective on apoptosis. Cell 76:777–779

    Article  PubMed  CAS  Google Scholar 

  • Wong DC, Wong KT, Nissom PM et al (2006) Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnol Bioeng 95:350–361

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  PubMed  CAS  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: Molecular machinery for self-eating. Cell Death Differ 12:1542–1552

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Alva A, Su H et al (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502

    Article  PubMed  CAS  Google Scholar 

  • Yun CY, Liu S, Lim SF et al (2007) Specific inhibition of caspase-8 and -9 in CHO cells enhances cell viability in batch and fed-batch cultures. Metab Eng 9:406–418

    Article  PubMed  CAS  Google Scholar 

  • Zanghi JA, Fussenegger M, Bailey JE (1999) Serum protects protein-free competent Chinese hamster ovary cells against apoptosis induced by nutrient deprivation in batch culture. Biotechnol Bioeng 64:108–119

    Article  PubMed  CAS  Google Scholar 

  • Zanghi JA, Renner WA, Bailey JE et al (2000) The growth factor inhibitor suramin reduces apoptosis and cell aggregation in protein-free CHO cell batch cultures. Biotechnol Prog 16:319–325

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Vuori K, Reed JC et al (1995) The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci USA 92:6161–6165

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Chen CC, Buckland B et al (1997) Fed-batch culture of recombinant NS0 myeloma cells with high monoclonal antibody production. Biotechnol Bioeng 55:783–792

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyun Min Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mohan, C., Kim, YG., Lee, G.M. (2009). Apoptosis and Autophagy Cell Engineering. In: Al-Rubeai, M. (eds) Cell Line Development. Cell Engineering, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2245-5_10

Download citation

Publish with us

Policies and ethics