Advertisement

Vitamines – algemeen

April 2020
Chapter
  • 157 Downloads

Samenvatting

Een adequate vitamine-inname is zeker niet vanzelfsprekend, en deficiënties door bijvoorbeeld ondervoeding, eenzijdige voeding, medicijngebruik of andere factoren blijven wereldwijd een probleem. Voor sommige vitamines is de optimale inname of concentratie nog steeds onderwerp van discussie. In dit hoofdstuk ligt de nadruk op de fysiologische aspecten van vitamines, hun opname en effecten in het lichaam. Het is vooral gericht op de diëtist die zich wil verdiepen in de basisprincipes, achtergronden en recente ontwikkelingen rond vitamines. Dertien voor de mens relevante vitamines komen één voor één aan de orde, daarbij aantekenend dat het belang van hun onderlinge samenhang in de voedingsmatrix en het eetpatroon maakt dat we ze eigenlijk niet afzonderlijk zouden moeten bespreken. De laatste jaren is over sommige vitamines meer geschreven en gediscussieerd dan over andere. Voorbeelden zijn vitamine B6 (vooral in verband met overdosering), vitamine B12, vitamine C, vitamine D en vitamine K2. Deze ontwikkelingen krijgen in dit hoofdstuk daarom extra aandacht.

Literatuur

  1. 1.
    Vandamme EJ, Revuelta JL. Industrial biotechnology of vitamins, biopigments, and antioxidants. Hoboken (New Jersey): John Wiley & Sons; 2016.CrossRefGoogle Scholar
  2. 2.
    Acevedo-Rocha CG, et al. Microbial cell factories for the sustainable manufacturing of B vitamins. Curr Opin Biotechnol. 2019;56:18–29.Google Scholar
  3. 3.
    Survase SA, Bajaj IB, Singhal RS. Biotechnological production of vitamins. Food Technol Biotech. 2006;44(3):381–96.Google Scholar
  4. 4.
    Biesalski HK. Nutrition meets the microbiome: micronutrients and the microbiota. Ann N Y Acad Sci. 2016;1372(1):53–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Debelo H, Novotny JA, Ferruzzi MG. Vitamin A. Adv Nutr. 2017;8(6):992–4.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kerns JC, Gutierrez JL. Thiamin. Adv Nutr. 2017;8(2):395–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chan Y-M, Bailey R, O’Connor DL. Folate. Adv Nutr. 2013;4(1):123–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Allen LH. Vitamin B-12. Adv Nutr. 2012;3(1):54–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hegyi J, Schwartz RA, Hegyi V. Pellagra: dermatitis, dementia, and diarrhea. Int J Dermatol. 2004;43(1):1–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Meyer-Ficca M, Kirkland JB. Niacin. Adv Nutr. 2016;7(3):556–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Brannon PM, Fleet JC. Vitamin D. Adv Nutr. 2011;2(4):365–7.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for vitamin A. EFSA J. 2015;13(3):4028.Google Scholar
  13. 13.
    Kohlmeier M. Fat-soluble vitamins and nonnutrients. In: Nutrient metabolism. 2nd ed., chapter 9. San Diego: Academic Press; 2015. pp. 479–565. Google Scholar
  14. 14.
    Combs GF, McClung JP. Vitamin A. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 6. San Diego: Academic Press; 2017. pp. 109–59.Google Scholar
  15. 15.
    Hammond JBR, Renzi LM. Carotenoids. Adv Nutr. 2013;4(4):474–6.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rodriguez-Concepcion M, et al. A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res. 2018;70:62–93.Google Scholar
  17. 17.
    Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Chapter 4. Washington DC: The National Academies Press; 2001.Google Scholar
  18. 18.
    Melse-Boonstra A, et al. Dietary vitamin A intake recommendations revisited: global confusion requires alignment of the units of conversion and expression. Public Health Nutr. 2017;20(11):1903–6.Google Scholar
  19. 19.
    Ross AC. Diet in vitamin A research. Methods in molecular biology (Clifton, N.J.). 2010;652:295–313.Google Scholar
  20. 20.
    Ross AC. Vitamin A and carotenoids. In: Coates PE, Betz JM, Blackman MR, et al., editors. Encyclopedia of dietary supplements. 2nd ed. Boca Raton: CRC Press; 2010.Google Scholar
  21. 21.
    Black RE, et al. Maternal and child undernutrition: global and regional exposures and health consequences. The Lancet. 2008;371(9608):243–60.Google Scholar
  22. 22.
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Dietary reference values for thiamin. EFSA J. 2016;14(12):e04653.Google Scholar
  23. 23.
    Kohlmeier M. Water-soluble vitamins and nonnutrients. In: Nutrient metabolism. 2nd ed., chapter 10. San Diego: Academic Press; 2015. pp. 567–671.Google Scholar
  24. 24.
    Combs GF, McClung JP. Thiamin. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 11. San Diego: Academic Press; 2017. pp. 297–314.Google Scholar
  25. 25.
    Pinto JT, Zempleni J. Riboflavin. Adv Nutr. 2016;7(5):973–5.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Dietary reference values for riboflavin. EFSA J. 2017;15(8):e04919.Google Scholar
  27. 27.
    Combs GF, McClung JP. Riboflavin. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 12. San Diego: Academic Press; 2017. pp. 315–329.Google Scholar
  28. 28.
    Thakur K, Tomar SK. Lactic acid bacteria as a cell factory for riboflavin production. Microb Biotechnol. 2015;9(4):441–51.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Schuit FC. Leerboek metabolisme. 2e herziene druk. Houten: Bohn Stafleu van Loghum; 2015.Google Scholar
  30. 30.
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for niacin. EFSA J. 2014;12(7):3759.Google Scholar
  31. 31.
    Combs GF, McClung JP. Niacin. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 13. San Diego: Academic Press; 2017. pp. 331–50.Google Scholar
  32. 32.
    Leonardi R, Jackowski S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus. 2007;2(2):1–21.CrossRefGoogle Scholar
  33. 33.
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for pantothenic acid. EFSA J. 2014;12(2):3581.Google Scholar
  34. 34.
    Combs GF, McClung JP. Pantothenic acid. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 16. San Diego: Academic Press; 2017. pp. 387–98.Google Scholar
  35. 35.
    Ueland PM, et al. Direct and functional biomarkers of vitamin B6 status. Ann Rev Nutr. 2015;35(1):33–70.Google Scholar
  36. 36.
    Hellmann H, Mooney S. Vitamin B6: a molecule for human health? Molecules. 2010;15(1):442–59.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Di Salvo ML, Contestabile R, Safo MK. Vitamin B6 salvage enzymes: mechanism, structure and regulation. Biochim Biophys Acta (BBA)-Proteins Proteom. 2011;1814(11):1597–608.Google Scholar
  38. 38.
    Eliot AC, Kirsch JF. Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Ann Rev Biochem. 2004;73(1):383–415.PubMedCrossRefGoogle Scholar
  39. 39.
    Rowland I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24.Google Scholar
  40. 40.
    Bolzetta F, et al. Are the recommended dietary allowances for vitamins appropriate for elderly people? J Acad Nutr Diet. 2015;115(11):1789–97.Google Scholar
  41. 41.
    Van der Steen W, Den Heijer T, Groen J. Vitamine B6-deficiëntie bij gebruik van levodopa. Ned. Tijdschr. Geneeskd. 162:D2818, 1–3 (casuïstiek 6 sept 2018). Google Scholar
  42. 42.
    Vrolijk MF, et al. The vitamin B6 paradox: supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function. Toxicol In Vitro. 2017;44:206–12.Google Scholar
  43. 43.
    Kulkantrakorn K. Pyridoxine-induced sensory ataxic neuronopathy and neuropathy: revisited. Neurol Sci. 2014;35(11):1827–30.PubMedCrossRefGoogle Scholar
  44. 44.
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for biotin. EFSA J. 2014;12(2):3580.Google Scholar
  45. 45.
    Combs GF, McClung JP. Biotin. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 15. San Diego: Academic Press; 2017. pp. 371–85.Google Scholar
  46. 46.
    Zempleni J, Kuroishi T. Biotin. Adv Nutr. 2012;3(2):213–4.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for folate. EFSA J. 2014;12(11):3893.Google Scholar
  48. 48.
    Combs GF, McClung JP. Folate. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 17. San Diego: Academic Press; 2017. pp. 399–429.Google Scholar
  49. 49.
    Ducker GS, Rabinowitz JD. One-carbon metabolism in health and disease. Cell Metab. 2017;25(1):27–42.PubMedCrossRefGoogle Scholar
  50. 50.
    Green R, et al. Vitamin B12 deficiency. Nat Rev Dis Primers. 2017, 3:17040.Google Scholar
  51. 51.
    Kok DE, et al. Bacterial folate biosynthesis and colorectal cancer risk: more than just a gut feeling. Crit Rev Food Sci Nutr. 2018, 1–13. Google Scholar
  52. 52.
    DeVos L, et al. Associations between single nucleotide polymorphisms in folate uptake and metabolizing genes with blood folate, homocysteine, and DNA uracil concentrations. Am J Clin Nutr. 2008;88(4):1149–58.Google Scholar
  53. 53.
    Pietrzik K, Bailey L, Shane B. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010;49(8):535–48.PubMedCrossRefGoogle Scholar
  54. 54.
    Beaudin AE, Stover PJ. Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. Birth Defects Res A Clin Mol Teratol. 2009;85(4):274–84.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    De-Regil LM, et al. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. Cochrane Database Syst Rev. 2015;12:Cd007950.Google Scholar
  56. 56.
    Aarabi M, et al. High-dose folic acid supplementation alters the human sperm methylome and is influenced by the MTHFR C677T polymorphism. Hum Mol Genet. 2015;24(22):6301–13.Google Scholar
  57. 57.
    Centeno Tablante E, et al. Fortification of wheat and maize flour with folic acid for population health outcomes. Cochrane Database Syst Rev. 2019;7:CD012150.Google Scholar
  58. 58.
    Ji Y, et al. Homocysteine: a modifiable culprit of cognitive impairment for us to conquer? J Neurol Sci. 2019;404:128–36.Google Scholar
  59. 59.
    Moretti R, Caruso P. The controversial role of homocysteine in neurology: from labs to clinical practice. Int J Mol Sci. 2019;20(1):231.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Obradovic M, et al. Link between homocysteine and cardiovascular diseases. Curr Pharmacol Rep. 2018;4(1):1–9.Google Scholar
  61. 61.
    Smith AD, et al. Homocysteine and dementia: an international consensus statement. J Alzheimer’s Dis. 2018;62(2):561–70.Google Scholar
  62. 62.
    Tinelli C, et al. Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front Nutr. 2019;6:49.Google Scholar
  63. 63.
    Li Y, Huang T, Zheng Y, et al. Folic acid supplementation and the risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016;5(8), pii: e003768.Google Scholar
  64. 64.
    Hoogeveen EK, et al. Hyperhomocysteinemia increases risk of death, especially in type 2 diabetes. Circulation. 2000;101(13):1506–11.Google Scholar
  65. 65.
    Huang T, et al. Association of homocysteine with type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. BMC Genomics. 2013;14(1):867.Google Scholar
  66. 66.
    Homocysteine Lowering Trialists. Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr. 2005;82(4):806–12.CrossRefGoogle Scholar
  67. 67.
    Lind MV, et al. Effect of folate supplementation on insulin sensitivity and type 2 diabetes: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2019;109(1):29–42.Google Scholar
  68. 68.
    Chon J, Stover PJ, Field MS. Targeting nuclear thymidylate biosynthesis. Mol Aspects Med. 2017;53:48–56.PubMedCrossRefGoogle Scholar
  69. 69.
    Verhoef H, et al. Safety and benefits of interventions to increase folate status in malaria-endemic areas. Br J Haematol. 2017;177(6):905–18.Google Scholar
  70. 70.
    Ford AH, Almeida OP. Effect of vitamin B supplementation on cognitive function in the elderly: a systematic review and meta-analysis. Drugs Aging. 2019;36(5):419–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Hiraoka M, Kagawa Y. Genetic polymorphisms and folate status. Congenital Anomalies. 2017;57(5):142–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for cobalamin (vitamin B12). EFSA J. 2015;13(7):4150.Google Scholar
  73. 73.
    Combs GF, McClung JP. Vitamin B12. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 18. San Diego: Academic Press; 2017. pp. 431–52.Google Scholar
  74. 74.
    Albert MJ, Mathan VI, Baker SJ. Vitamin B12 synthesis by human small intestinal bacteria. Nature. 1980;283(5749):781–2.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Grace E, et al. Review article: small intestinal bacterial overgrowth – prevalence, clinical features, current and developing diagnostic tests, and treatment. Aliment Pharmacol Ther. 2013;38(7):674–88.Google Scholar
  76. 76.
    Edelmann M, et al. Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. J Food Compos Anal. 2019;82:103226.Google Scholar
  77. 77.
    Watanabe F, et al. Vitamin B12-containing plant food sources for vegetarians. Nutrients. 2014;6(5):1861–73.Google Scholar
  78. 78.
    Van Orten-Luiten ACB. Food-drug interactions in elderly. In: Raats MM, editor. Food for the aging population. 2nd ed. Cambridge: Woodhead Publishing; 2016.Google Scholar
  79. 79.
    Green R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood. 2017;129(19):2603–11.PubMedCrossRefGoogle Scholar
  80. 80.
    Smulders YM. Metformine veroorzaakt wel degelijk B12-deficiëntie. Ned Tijdschr Geneeskd. 2010;154:A2351.Google Scholar
  81. 81.
    Alpers DH. Another indication for the use of oral vitamin B-12 supplementation. Am J Clin Nutr. 2018;108(1):1–3.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Schijns W, et al. Efficacy of oral compared with intramuscular vitamin B-12 supplementation after Roux-en-Y gastric bypass: a randomized controlled trial. Am J Clin Nutr. 2018;108(1):6–12.Google Scholar
  83. 83.
    Meyer HE, Willett WC, Fung TT, et al. Association of high intakes of vitamins B6 and B12 from food and supplements with risk of hip fracture among postmenopausal women in the nurses’ health study. JAMA Netw Open. 2019;2(5):e193591.Google Scholar
  84. 84.
    Nishikimi M, Yagi K. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. Am J Clin Nutr. 1991;54(6 Suppl):1203s–8s.PubMedCrossRefGoogle Scholar
  85. 85.
    Ngo B, et al. Targeting cancer vulnerabilities with high-dose vitamin C. Nat Rev Cancer. 2019;19(5):271–82.Google Scholar
  86. 86.
    Combs GF, McClung JP. Vitamin C. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 10. San Diego: Academic Press; 2017. pp. 267–95.Google Scholar
  87. 87.
    Mandl J, Szarka A, Bánhegyi G. Vitamin C: update on physiology and pharmacology. Br J Pharmacol. 2009;157(7):1097–110.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci U S A. 1989;86(16):6377–81.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Baron JH. Sailors’ scurvy before and after James Lind – a reassessment. Nutr Rev. 2009;67(6):315–32.PubMedCrossRefGoogle Scholar
  90. 90.
    Hahn T, Adams W, Williams K. Is vitamin C enough? A case report of scurvy in a five-year-old girl and review of the literature. BMC Pediatr. 2019;19(1):74.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Golriz F, et al. Modern American scurvy – experience with vitamin C deficiency at a large children’s hospital. Pediatr Radiol. 2017;47(2):214–20.Google Scholar
  92. 92.
    Ferrada L, Salazar K, Nualart F. Metabolic control by dehydroascorbic acid: questions and controversies in cancer cells. J Cell Physiol. 2019;234(11):19331–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Padayatty SJ, et al. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140(7):533–7.Google Scholar
  94. 94.
    Jacobs C, et al. Is there a role for oral or intravenous ascorbate (vitamin C) in treating patients with cancer? A systematic review. The Oncologist. 2015;20(2):210–23.Google Scholar
  95. 95.
    RIVM. Inname van vitamines en mineralen (VCP). Voedselconsumptiepeiling 2012–2016. 2018; Available from: https://www.wateetnederland.nl/resultaten/vitamines-en-mineralen/inname.
  96. 96.
    Pauling L. The significance of the evidence about ascorbic acid and the common cold. Proc Natl Acad Sci U S A. 1971;68(11):2678–81.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Douglas RM, et al. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2007;3:Cd000980.Google Scholar
  98. 98.
    Van Duijnhoven FJ, et al. Fruit, vegetables, and colorectal cancer risk: the European prospective investigation into cancer and nutrition. Am J Clin Nutr. 2009;89(5):1441–52.Google Scholar
  99. 99.
    Farvid MS, et al. Fruit and vegetable consumption and breast cancer incidence: repeated measures over 30 years of follow-up. IJC. 2019;144(7):1496–510.Google Scholar
  100. 100.
    Grooth H-J, et al. Vitamin-C pharmacokinetics in critically ill patients: a randomized trial of four intravenous regimens. Chest. 2018;153(6):1368–77.Google Scholar
  101. 101.
    Hill A, Wendt S, Benstoem C, et al. Vitamin C to improve organ dysfunction in cardiac surgery patients-review and pragmatic approach. Nutrients. 2018;10(8), pii: E974.Google Scholar
  102. 102.
    Langlois P, Lamontagne F. Vitamin C for the critically ill: is the evidence strong enough? Nutrition. 2019;60:185–90.CrossRefGoogle Scholar
  103. 103.
    Fowler AA III, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trial. JAMA. 2019;322(13):1261–70.Google Scholar
  104. 104.
    Brant EB, Angus DC. Is high-dose vitamin C beneficial for patients with sepsis? JAMA. 2019;322(13):1257–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Vaes AMM. Vitamin D for older adults: determinants of status, supplementation strategies and its role in muscle function. Wageningen: Wageningen University; 2017.CrossRefGoogle Scholar
  106. 106.
    Ten Haaf DSM, et al. Determinants of vitamin D status in physically active elderly in the Netherlands. Eur J Nutr. 2018;58(8):3121–8.Google Scholar
  107. 107.
    Combs GF, McClung JP. Vitamin D. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 7. San Diego: Academic Press; 2017. pp. 161–206.Google Scholar
  108. 108.
    Balvers MGJ, et al. Recommended intakes of vitamin D to optimise health, associated circulating 25-hydroxyvitamin D concentrations, and dosing regimens to treat deficiency: workshop report and overview of current literature. J Nutr Sci. 2015;4:e23.Google Scholar
  109. 109.
    Holick MF. Resurrection of vitamin D deficiency and rickets. J Clin Invest. 2006;116(8):2062–72.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bär L, et al. Regulation of fibroblast growth factor 23 (FGF23) in health and disease. FEBS Letters. 2019;593(15):1879–900.Google Scholar
  111. 111.
    Wielders JP, Muskiet FA, Van de Wiel A. Shedding new light on vitamin D–reassessment of an essential prohormone. Ned Tijdschr Geneeskd. 2010;154:A1810.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Autier P, et al. Vitamin D status and ill health: a systematic review. Lancet Diabetes Endocrinol. 2014;2(1):76–89.Google Scholar
  113. 113.
    Morley JE. Vitamin D: does the emperor have no clothes? J Nutr Health Aging. 2019;23(4):316–7.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Adams JS, Hewison M. Update in vitamin D. J Clin Endocrinol Metab. 2010;95(2):471–8.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Brouwer-Brolsma EM, et al. Vitamin D: do we get enough? A discussion between vitamin D experts in order to make a step towards the harmonisation of dietary reference intakes for vitamin D across Europe. Osteoporos Int. 2013;24(5):1567–77.Google Scholar
  116. 116.
    Muskiet FAJ, et al. Een kritische beschouwing van de aanbevelingen en de rationale van het gezondheidsraadsrapport ‘Evaluatie van de voedingsnormen voor vitamine D’. Ned Tijdschr Klin Chem Labgeneesk. 2013;38:169–85.Google Scholar
  117. 117.
    Luxwolda MF, et al. Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br J Nutr. 2012;108(09):1557–61.Google Scholar
  118. 118.
    Tripkovic L, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95(6):1357–64.Google Scholar
  119. 119.
    Tripkovic L, et al. Daily supplementation with 15 μg vitamin D2 compared with vitamin D3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: a 12-wk randomized, placebo-controlled food-fortification trial. Am J Clin Nutr. 2017;106(2):481–90.Google Scholar
  120. 120.
    Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz L, et al. Vitamin D toxicity-a clinical perspective. Front Endocrinol. 2018;9:550.Google Scholar
  121. 121.
    Dimitrov V, White JH. Vitamin D signaling in intestinal innate immunity and homeostasis. Mol Cell Endocrinol. 2017;453:68–78.PubMedCrossRefGoogle Scholar
  122. 122.
    Wintermeyer E, et al. Crucial role of vitamin D in the musculoskeletal system. Nutrients. 2016;8(6):319.Google Scholar
  123. 123.
    Ritter CS, Brown AJ. Direct suppression of PTH-gene expression by the vitamin D prohormones doxercalciferol and calcidiol requires the vitamin D receptor. J Mol Endocrinol. 2011;46(2):63–6.PubMedGoogle Scholar
  124. 124.
    O’Riordan JLH, Bijvoet OLM. Rickets before the discovery of vitamin D. BoneKEy Rep. 2014;3:478.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    McCollum EV, et al. Studies on experimental rickets XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;53(2):293–312.Google Scholar
  126. 126.
    Wauters IMPMJ, Van Soesbergen RM. Ziek door te weinig zonlicht: rachitis en osteomalacie. Ned Tijdschr Geneeskd. 1999;143:593–7.Google Scholar
  127. 127.
    Zhao J, et al. Association between calcium or vitamin D supplementation and fracture incidence in community-dwelling older adults: a systematic review and meta-analysis. JAMA. 2017;318(24):2466–82.Google Scholar
  128. 128.
    Bolland MJ, Grey A, Avenell A. Effects of vitamin D supplementation on musculoskeletal health: a systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol. 2018;6(11):847–58.PubMedCrossRefGoogle Scholar
  129. 129.
    Dyer SM, et al. Benefits of vitamin D supplementation in older people living in nursing care facilities. Age Ageing. 2019;48(5):761–2.Google Scholar
  130. 130.
    Cameron ID, et al. Interventions for preventing falls in older people in care facilities and hospitals. Cochrane Database Syst Rev. 2018;9:CD005465.Google Scholar
  131. 131.
    Martineau AR, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583.Google Scholar
  132. 132.
    Jolliffe DA, Griffiths CJ, Martineau AR. Vitamin D in the prevention of acute respiratory infection: systematic review of clinical studies. J Steroid Biochem Mol Biol. 2013;136:321–9.PubMedCrossRefGoogle Scholar
  133. 133.
    Sintzel MB, Rametta M, Reder AT. Vitamin D and multiple sclerosis: a comprehensive review. Neurol Ther. 2018;7(1):59–85.PubMedCrossRefGoogle Scholar
  134. 134.
    Hupperts R, et al. Randomized trial of daily high-dose vitamin D3 in patients with RRMS receiving subcutaneous interferon beta-1a. Neurology. 2019;93(20):e1906–16.Google Scholar
  135. 135.
    Hawthorne AB. Editorial: clinical benefits of vitamin D therapy in inflammatory bowel disease. Aliment Pharmacol Ther. 2017;45(10):1365–6.PubMedCrossRefGoogle Scholar
  136. 136.
    Bischoff-Ferrari H. Relevance of vitamin D in muscle health. Rev Endocr Metab Disord. 2012;13(1):71–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Dzik KP, Kaczor JJ. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. Eur J Appl Physiol. 2019;119(4):825–39.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Montenegro KR, et al. Mechanisms of vitamin D action in skeletal muscle. Nutr Res Rev. 2019;32(2):1–13.Google Scholar
  139. 139.
    Girgis CM, et al. Vitamin D receptor ablation and vitamin D deficiency result in reduced grip strength, altered muscle fibers, and increased myostatin in mice. Calcif Tissue Int. 2015;97(6):602–10.Google Scholar
  140. 140.
    Girgis CM, Cha KM, So B, et al. Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. J Cachexia Sarcopenia Muscle. 2019;10(6):1228–40.Google Scholar
  141. 141.
    Vaes AMM, et al. Cholecalciferol or 25-hydroxycholecalciferol supplementation does not affect muscle strength and physical performance in prefrail and frail older adults. J Nutr. 2018;148(5):712–20.Google Scholar
  142. 142.
    Maalmi H, et al. Relationship of very low serum 25-hydroxyvitamin D3 levels with long-term survival in a large cohort of colorectal cancer patients from Germany. Eur J Epidemiol. 2017;32(11):961–71.Google Scholar
  143. 143.
    Van Harten-Gerritsen AS, et al. Vitamin D, inflammation, and colorectal cancer progression: a review of mechanistic studies and future directions for epidemiological studies. Cancer Epidemiol Biomarkers Prev. 2015;24(12):1820–8.Google Scholar
  144. 144.
    Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44.Google Scholar
  145. 145.
    De Koning EJ, et al. Vitamin D supplementation for the prevention of depression and poor physical function in older persons: the D-Vitaal study, a randomized clinical trial. Am J Clin Nutr. 2019;110(5):1119–30.Google Scholar
  146. 146.
    Pittas AG, et al. Vitamin D supplementation and prevention of type 2 diabetes. N Engl J Med. 2019;381(6):520–30.Google Scholar
  147. 147.
    Zhang Y, et al. Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ. 2019;366:l4673.Google Scholar
  148. 148.
    Combs GF, McClung JP. Vitamin E. In: Combs GF, McClung JP, editors. The vitamins. 5th ed., chapter 8. San Diego: Academic Press; 2017. pp. 207–42.Google Scholar
  149. 149.
    Meydani SN, Lewis ED, Wu D. Perspective: should vitamin E recommendations for older adults be increased? Adv Nutr. 2018;9(5):533–43.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Shen L, Ji HF. Vitamin E: supplement versus diet in neurodegenerative diseases. Trends Mol Med. 2012;18(8):443–5.PubMedCrossRefGoogle Scholar
  151. 151.
    Patel SS, Siddiqui MS. Current and emerging therapies for non-alcoholic fatty liver disease. Drugs. 2018;79(1):75–84.CrossRefGoogle Scholar
  152. 152.
    Gann PH. Randomized trials of antioxidant supplementation for cancer prevention: first bias, now chance – next, cause. JAMA. 2009;301(1):102–3.PubMedCrossRefGoogle Scholar
  153. 153.
    Gaziano JM, et al. Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians’ health study II randomized controlled trial. JAMA. 2009;301(1):52–62.Google Scholar
  154. 154.
    Lippman SM, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2009;301(1):39–51.Google Scholar
  155. 155.
    Klein EA, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2011;306(14):1549–56.Google Scholar
  156. 156.
    Wang L, et al. Vitamin E and C supplementation and risk of cancer in men: posttrial follow-up in the Physicians’ health study II randomized trial. Am J Clin Nutr. 2014;100(3):915–23.Google Scholar
  157. 157.
    Halder M, Petsophonsakul P, Akbulut AC, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int J Mol Sci. 2019;20(4), pii: E896.Google Scholar
  158. 158.
    Schwalfenberg GK. Vitamins K1 and K2: the emerging group of vitamins required for human health. Nutr Metab. 2017(18):1–6, Article ID 6254836. Google Scholar
  159. 159.
    Shearer MJ, Fu X, Booth SL. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr. 2012;3(2):182–95.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Suttie JW, Booth SL. Vitamin K. Adv Nutr. 2011;2(5):440–1.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Willems BAG, et al. The realm of vitamin K dependent proteins: shifting from coagulation toward calcification. Mol Nutr Food Res. 2014;58(8):1620–35.Google Scholar
  162. 162.
    Theuwissen E, Smit E, Vermeer C. The role of vitamin K in soft-tissue calcification. Adv Nutr. 2012;3(2):166–73.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Schurgers LJ, Vermeer C. Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim Biophys Acta. 2002;1570(1):27–32.PubMedCrossRefGoogle Scholar
  164. 164.
    Vermeer C, et al. Beyond deficiency: potential benefits of increased intakes of vitamin K for bone and vascular health. Eur J Nutr. 2004;43(6):325–35.Google Scholar
  165. 165.
    Geleijnse JM, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam study. J Nutr. 2004;134(11):3100–5.Google Scholar
  166. 166.
    Gast GC, et al. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis. 2009;19(7):504–10.Google Scholar
  167. 167.
    Van Ballegooijen AJ, et al. Joint association of low vitamin D and vitamin K status with blood pressure and hypertension. Hypertension. 2017;69(6):1165–72.Google Scholar
  168. 168.
    Mayer O, et al. Synergistic effect of low K and D vitamin status on arterial stiffness in a general population. J Nutr Biochem. 2017;46:83–9.Google Scholar
  169. 169.
    Palermo A, et al. Vitamin K and osteoporosis: Myth or reality? Metabolism. 2017;70:57–71.Google Scholar
  170. 170.
    Mott A, et al. Effect of vitamin K on bone mineral density and fractures in adults: an updated systematic review and meta-analysis of randomised controlled trials. Osteoporosis Int. 2019;30(8):1543–59.Google Scholar
  171. 171.
    Riphagen IJ, Keyzer CA, Drummen NEA, et al. Prevalence and effects of functional vitamin K insufficiency: The PREVEND study. Nutrients. 2017;9(12), pii: E1334.Google Scholar

Copyright information

© Bohn Stafleu van Loghum is een imprint van Springer Media B.V., onderdeel van Springer Nature 2020

Authors and Affiliations

  1. 1.Afdeling Humane Voeding en GezondheidWageningen University and ResearchWageningenNederland

Personalised recommendations